4.1 NumPy的ndarray:一种多维数组对象
NumPy最重要的一个特点就是其N维数组对象(即ndarray),该对象是一个快速而灵活的大数据集容器。你可以利用这种数组对整块数据执行一些数学运算,其语法跟标量元素之间的运算一样。
要明白Python是如何利用与标量值类似的语法进行批次计算,我先引入NumPy,然后生成一个包含随机数据的小数组:
In [12]: import numpy as np
# Generate some random data
In [13]: data = np.random.randn(2, 3)
In [14]: data
Out[14]:
array([[-0.2047, 0.4789, -0.5194],
[-0.5557, 1.9658, 1.3934]])
然后进行数学运算:
In [15]: data * 10
Out[15]:
array([[ -2.0471, 4.7894, -5.1944],
[ -5.5573, 19.6578, 13.9341]])
In [16]: data + data
Out[16]:
array([[-0.4094, 0.9579, -1.0389],
[-1.1115, 3.9316, 2.7868]])
第一个例子中,所有的元素都乘以10。第二个例子中,每个元素都与自身相加。
笔记:在本章及全书中,我会使用标准的NumPy惯用法
import numpy as np
。你当然也可以在代码中使用from numpy import *
,但不建议这么做。numpy
的命名空间很大,包含许多函数,其中一些的名字与Python的内置函数重名(比如min和max)。
ndarray是一个通用的同构数据多维容器,也就是说,其中的所有元素必须是相同类型的。每个数组都有一个shape(一个表示各维度大小的元组)和一个dtype(一个用于说明数组数据类型的对象):
In [17]: data.shape
Out[17]: (2, 3)
In [18]: data.dtype
Out[18]: dtype('float64')
本章将会介绍NumPy数组的基本用法,这对于本书后面各章的理解基本够用。虽然大多数数据分析工作不需要深入理解NumPy,但是精通面向数组的编程和思维方式是成为Python科学计算牛人的一大关键步骤。
笔记:当你在本书中看到“数组”、“NumPy数组”、”ndarray”时,基本上都指的是同一样东西,即ndarray对象。
创建ndarray
创建数组最简单的办法就是使用array函数。它接受一切序列型的对象(包括其他数组),然后产生一个新的含有传入数据的NumPy数组。以一个列表的转换为例:
In [19]: data1 = [6, 7.5, 8, 0, 1]
In [20]: arr1 = np.array(data1)
In [21]: arr1
Out[21]: array([ 6. , 7.5, 8. , 0. , 1. ])
嵌套序列(比如由一组等长列表组成的列表)将会被转换为一个多维数组:
In [22]: data2 = [[1, 2, 3, 4], [5, 6, 7, 8]]
In [23]: arr2 = np.array(data2)
In [24]: arr2
Out[24]:
array([[1, 2, 3, 4],
[5, 6, 7, 8]])
因为data2是列表的列表,NumPy数组arr2的两个维度的shape是从data2引入的。可以用属性ndim和shape验证:
In [25]: arr2.ndim
Out[25]: 2
In [26]: arr2.shape
Out[26]: (2, 4)
除非特别说明(稍后将会详细介绍),np.array会尝试为新建的这个数组推断出一个较为合适的数据类型。数据类型保存在一个特殊的dtype对象中。比如说,在上面的两个例子中,我们有:
In [27]: arr1.dtype
Out[27]: dtype('float64')
In [28]: arr2.dtype
Out[28]: dtype('int64')
除np.array之外,还有一些函数也可以新建数组。比如,zeros和ones分别可以创建指定长度或形状的全0或全1数组。empty可以创建一个没有任何具体值的数组。要用这些方法创建多维数组,只需传入一个表示形状的元组即可:
In [29]: np.zeros(10)
Out[29]: array([ 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.])
In [30]: np.zeros((3, 6))
Out[30]:
array([[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.],
[ 0., 0., 0., 0., 0., 0.]])
In [31]: np.empty((2, 3, 2))
Out[31]:
array([[[ 0., 0.],
[ 0., 0.],
[ 0., 0.]],
[[ 0., 0.],
[ 0., 0.],
[ 0., 0.]]])
注意:认为np.empty会返回全0数组的想法是不安全的。很多情况下(如前所示),它返回的都是一些未初始化的垃圾值。
arange是Python内置函数range的数组版:
In [32]: np.arange(15)
Out[32]: array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14])
表4-1列出了一些数组创建函数。由于NumPy关注的是数值计算,因此,如果没有特别指定,数据类型基本都是float64(浮点数)。
ndarray的数据类型
dtype(数据类型)是一个特殊的对象,它含有ndarray将一块内存解释为特定数据类型所需的信息:
In [33]: arr1 = np.array([1, 2, 3], dtype=np.float64)
In [34]: arr2 = np.array([1, 2, 3], dtype=np.int32)
In [35]: arr1.dtype
Out[35]: dtype('float64')
In [36]: arr2.dtype
Out[36]: dtype('int32')
dtype是NumPy灵活交互其它系统的源泉之一。多数情况下,它们直接映射到相应的机器表示,这使得“读写磁盘上的二进制数据流”以及“集成低级语言代码(如C、Fortran)”等工作变得更加简单。数值型dtype的命名方式相同:一个类型名(如float或int),后面跟一个用于表示各元素位长的数字。标准的双精度浮点值(即Python中的float对象)需要占用8字节(即64位)。因此,该类型在NumPy中就记作float64。表4-2列出了NumPy所支持的全部数据类型。
笔记:记不住这些NumPy的dtype也没关系,新手更是如此。通常只需要知道你所处理的数据的大致类型是浮点数、复数、整数、布尔值、字符串,还是普通的Python对象即可。当你需要控制数据在内存和磁盘中的存储方式时(尤其是对大数据集),那就得了解如何控制存储类型。
你可以通过ndarray的astype方法明确地将一个数组从一个dtype转换成另一个dtype:
In [37]: arr = np.array([1, 2, 3, 4, 5])
In [38]: arr.dtype
Out[38]: dtype('int64')
In [39]: float_arr = arr.astype(np.float64)
In [40]: float_arr.dtype
Out[40]: dtype('float64')
在本例中,整数被转换成了浮点数。如果将浮点数转换成整数,则小数部分将会被截取删除:
In [41]: arr = np.array([3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [42]: arr
Out[42]: array([ 3.7, -1.2, -2.6, 0.5, 12.9, 10.1])
In [43]: arr.astype(np.int32)
Out[43]: array([ 3, -1, -2, 0, 12, 10], dtype=int32)
如果某字符串数组表示的全是数字,也可以用astype将其转换为数值形式:
In [44]: numeric_strings = np.array(['1.25', '-9.6', '42'], dtype=np.string_)
In [45]: numeric_strings.astype(float)
Out[45]: array([ 1.25, -9.6 , 42. ])
注意:使用numpy.string_类型时,一定要小心,因为NumPy的字符串数据是大小固定的,发生截取时,不会发出警告。pandas提供了更多非数值数据的便利的处理方法。
如果转换过程因为某种原因而失败了(比如某个不能被转换为float64的字符串),就会引发一个ValueError。这里,我比较懒,写的是float而不是np.float64;NumPy很聪明,它会将Python类型映射到等价的dtype上。
数组的dtype还有另一个属性:
In [46]: int_array = np.arange(10)
In [47]: calibers = np.array([.22, .270, .357, .380, .44, .50], dtype=np.float64)
In [48]: int_array.astype(calibers.dtype)
Out[48]: array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
你还可以用简洁的类型代码来表示dtype:
In [49]: empty_uint32 = np.empty(8, dtype='u4')
In [50]: empty_uint32
Out[50]:
array([ 0, 1075314688, 0, 1075707904, 0,
1075838976, 0, 1072693248], dtype=uint32)
笔记:调用astype总会创建一个新的数组(一个数据的备份),即使新的dtype与旧的dtype相同。
NumPy数组的运算
数组很重要,因为它使你不用编写循环即可对数据执行批量运算。NumPy用户称其为矢量化(vectorization)。大小相等的数组之间的任何算术运算都会将运算应用到元素级:
In [51]: arr = np.array([[1., 2., 3.], [4., 5., 6.]])
In [52]: arr
Out[52]:
array([[ 1., 2., 3.],
[ 4., 5., 6.]])
In [53]: arr * arr
Out[53]:
array([[ 1., 4., 9.],
[ 16., 25., 36.]])
In [54]: arr - arr
Out[54]:
array([[ 0., 0., 0.],
[ 0., 0., 0.]])
数组与标量的算术运算会将标量值传播到各个元素:
In [55]: 1 / arr
Out[55]:
array([[ 1. , 0.5 , 0.3333],
[ 0.25 , 0.2 , 0.1667]])
In [56]: arr ** 0.5
Out[56]:
array([[ 1. , 1.4142, 1.7321],
[ 2. , 2.2361, 2.4495]])
大小相同的数组之间的比较会生成布尔值数组:
In [57]: arr2 = np.array([[0., 4., 1.], [7., 2., 12.]])
In [58]: arr2
Out[58]:
array([[ 0., 4., 1.],
[ 7., 2., 12.]])
In [59]: arr2 > arr
Out[59]:
array([[False, True, False],
[ True, False, True]], dtype=bool)
不同大小的数组之间的运算叫做广播(broadcasting),将在附录A中对其进行详细讨论。本书的内容不需要对广播机制有多深的理解。
基本的索引和切片
NumPy数组的索引是一个内容丰富的主题,因为选取数据子集或单个元素的方式有很多。一维数组很简单。从表面上看,它们跟Python列表的功能差不多:
In [60]: arr = np.arange(10)
In [61]: arr
Out[61]: array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
In [62]: arr[5]
Out[62]: 5
In [63]: arr[5:8]
Out[63]: array([5, 6, 7])
In [64]: arr[5:8] = 12
In [65]: arr
Out[65]: array([ 0, 1, 2, 3, 4, 12, 12, 12, 8, 9])
如上所示,当你将一个标量值赋值给一个切片时(如arr[5:8]=12),该值会自动传播(也就说后面将会讲到的“广播”)到整个选区。跟列表最重要的区别在于,数组切片是原始数组的视图。这意味着数据不会被复制,视图上的任何修改都会直接反映到源数组上。
作为例子,先创建一个arr的切片:
In [66]: arr_slice = arr[5:8]
In [67]: arr_slice
Out[67]: array([12, 12, 12])
现在,当我修稿arr_slice中的值,变动也会体现在原始数组arr中:
In [68]: arr_slice[1] = 12345
In [69]: arr
Out[69]: array([ 0, 1, 2, 3, 4, 12, 12345, 12, 8,
9])
切片[ : ]会给数组中的所有值赋值:
In [70]: arr_slice[:] = 64
In [71]: arr
Out[71]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
如果你刚开始接触NumPy,可能会对此感到惊讶(尤其是当你曾经用过其他热衷于复制数组数据的编程语言)。由于NumPy的设计目的是处理大数据,所以你可以想象一下,假如NumPy坚持要将数据复制来复制去的话会产生何等的性能和内存问题。
注意:如果你想要得到的是ndarray切片的一份副本而非视图,就需要明确地进行复制操作,例如
arr[5:8].copy()
。
对于高维度数组,能做的事情更多。在一个二维数组中,各索引位置上的元素不再是标量而是一维数组:
In [72]: arr2d = np.array([[1, 2, 3], [4, 5, 6], [7, 8, 9]])
In [73]: arr2d[2]
Out[73]: array([7, 8, 9])
因此,可以对各个元素进行递归访问,但这样需要做的事情有点多。你可以传入一个以逗号隔开的索引列表来选取单个元素。也就是说,下面两种方式是等价的:
In [74]: arr2d[0][2]
Out[74]: 3
In [75]: arr2d[0, 2]
Out[75]: 3
图4-1说明了二维数组的索引方式。轴0作为行,轴1作为列。
在多维数组中,如果省略了后面的索引,则返回对象会是一个维度低一点的ndarray(它含有高一级维度上的所有数据)。因此,在2×2×3数组arr3d中:
In [76]: arr3d = np.array([[[1, 2, 3], [4, 5, 6]], [[7, 8, 9], [10, 11, 12]]])
In [77]: arr3d
Out[77]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
arr3d[0]是一个2×3数组:
In [78]: arr3d[0]
Out[78]:
array([[1, 2, 3],
[4, 5, 6]])
标量值和数组都可以被赋值给arr3d[0]:
In [79]: old_values = arr3d[0].copy()
In [80]: arr3d[0] = 42
In [81]: arr3d
Out[81]:
array([[[42, 42, 42],
[42, 42, 42]],
[[ 7, 8, 9],
[10, 11, 12]]])
In [82]: arr3d[0] = old_values
In [83]: arr3d
Out[83]:
array([[[ 1, 2, 3],
[ 4, 5, 6]],
[[ 7, 8, 9],
[10, 11, 12]]])
相似的,arr3d[1,0]可以访问索引以(1,0)开头的那些值(以一维数组的形式返回):
In [84]: arr3d[1, 0]
Out[84]: array([7, 8, 9])
虽然是用两步进行索引的,表达式是相同的:
In [85]: x = arr3d[1]
In [86]: x
Out[86]:
array([[ 7, 8, 9],
[10, 11, 12]])
In [87]: x[0]
Out[87]: array([7, 8, 9])
注意,在上面所有这些选取数组子集的例子中,返回的数组都是视图。
切片索引
ndarray的切片语法跟Python列表这样的一维对象差不多:
In [88]: arr
Out[88]: array([ 0, 1, 2, 3, 4, 64, 64, 64, 8, 9])
In [89]: arr[1:6]
Out[89]: array([ 1, 2, 3, 4, 64])
对于之前的二维数组arr2d,其切片方式稍显不同:
In [90]: arr2d
Out[90]:
array([[1, 2, 3],
[4, 5, 6],
[7, 8, 9]])
In [91]: arr2d[:2]
Out[91]:
array([[1, 2, 3],
[4, 5, 6]])
可以看出,它是沿着第0轴(即第一个轴)切片的。也就是说,切片是沿着一个轴向选取元素的。表达式arr2d[:2]可以被认为是“选取arr2d的前两行”。
你可以一次传入多个切片,就像传入多个索引那样:
In [92]: arr2d[:2, 1:]
Out[92]:
array([[2, 3],
[5, 6]])
像这样进行切片时,只能得到相同维数的数组视图。通过将整数索引和切片混合,可以得到低维度的切片。
例如,我可以选取第二行的前两列:
In [93]: arr2d[1, :2]
Out[93]: array([4, 5])
相似的,还可以选择第三列的前两行:
In [94]: arr2d[:2, 2]
Out[94]: array([3, 6])
图4-2对此进行了说明。注意,“只有冒号”表示选取整个轴,因此你可以像下面这样只对高维轴进行切片:
In [95]: arr2d[:, :1]
Out[95]:
array([[1],
[4],
[7]])
自然,对切片表达式的赋值操作也会被扩散到整个选区:
In [96]: arr2d[:2, 1:] = 0
In [97]: arr2d
Out[97]:
array([[1, 0, 0],
[4, 0, 0],
[7, 8, 9]])
布尔型索引
来看这样一个例子,假设我们有一个用于存储数据的数组以及一个存储姓名的数组(含有重复项)。在这里,我将使用numpy.random中的randn函数生成一些正态分布的随机数据:
In [98]: names = np.array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'])
In [99]: data = np.random.randn(7, 4)
In [100]: names
Out[100]:
array(['Bob', 'Joe', 'Will', 'Bob', 'Will', 'Joe', 'Joe'],
dtype='<U4')
In [101]: data
Out[101]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 1.669 , -0.4386, -0.5397, 0.477 ],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]])
假设每个名字都对应data数组中的一行,而我们想要选出对应于名字”Bob”的所有行。跟算术运算一样,数组的比较运算(如==)也是矢量化的。因此,对names和字符串”Bob”的比较运算将会产生一个布尔型数组:
In [102]: names == 'Bob'
Out[102]: array([ True, False, False, True, False, False, False], dtype=bool)
这个布尔型数组可用于数组索引:
In [103]: data[names == 'Bob']
Out[103]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.669 , -0.4386, -0.5397, 0.477 ]])
布尔型数组的长度必须跟被索引的轴长度一致。此外,还可以将布尔型数组跟切片、整数(或整数序列,稍后将对此进行详细讲解)混合使用:
In [103]: data[names == 'Bob']
Out[103]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.669 , -0.4386, -0.5397, 0.477 ]])
注意:如果布尔型数组的长度不对,布尔型选择就会出错,因此一定要小心。
下面的例子,我选取了names == 'Bob'
的行,并索引了列:
In [104]: data[names == 'Bob', 2:]
Out[104]:
array([[ 0.769 , 1.2464],
[-0.5397, 0.477 ]])
In [105]: data[names == 'Bob', 3]
Out[105]: array([ 1.2464, 0.477 ])
要选择除”Bob”以外的其他值,既可以使用不等于符号(!=),也可以通过~对条件进行否定:
In [106]: names != 'Bob'
Out[106]: array([False, True, True, False, True, True, True], dtype=bool)
In [107]: data[~(names == 'Bob')]
Out[107]:
array([[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]])
~操作符用来反转条件很好用:
In [108]: cond = names == 'Bob'
In [109]: data[~cond]
Out[109]:
array([[ 1.0072, -1.2962, 0.275 , 0.2289],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 3.2489, -1.0212, -0.5771, 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[-0.7135, -0.8312, -2.3702, -1.8608]])
选取这三个名字中的两个需要组合应用多个布尔条件,使用&(和)、|(或)之类的布尔算术运算符即可:
In [110]: mask = (names == 'Bob') | (names == 'Will')
In [111]: mask
Out[111]: array([ True, False, True, True, True, False, False], dtype=bool)
In [112]: data[mask]
Out[112]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.3529, 0.8864, -2.0016, -0.3718],
[ 1.669 , -0.4386, -0.5397, 0.477 ],
[ 3.2489, -1.0212, -0.5771, 0.1241]])
通过布尔型索引选取数组中的数据,将总是创建数据的副本,即使返回一模一样的数组也是如此。
注意:Python关键字and和or在布尔型数组中无效。要使用&与|。
通过布尔型数组设置值是一种经常用到的手段。为了将data中的所有负值都设置为0,我们只需:
In [113]: data[data < 0] = 0
In [114]: data
Out[114]:
array([[ 0.0929, 0.2817, 0.769 , 1.2464],
[ 1.0072, 0. , 0.275 , 0.2289],
[ 1.3529, 0.8864, 0. , 0. ],
[ 1.669 , 0. , 0. , 0.477 ],
[ 3.2489, 0. , 0. , 0.1241],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[ 0. , 0. , 0. , 0. ]])
通过一维布尔数组设置整行或列的值也很简单:
In [115]: data[names != 'Joe'] = 7
In [116]: data
Out[116]:
array([[ 7. , 7. , 7. , 7. ],
[ 1.0072, 0. , 0.275 , 0.2289],
[ 7. , 7. , 7. , 7. ],
[ 7. , 7. , 7. , 7. ],
[ 7. , 7. , 7. , 7. ],
[ 0.3026, 0.5238, 0.0009, 1.3438],
[ 0. , 0. , 0. , 0. ]])
后面会看到,这类二维数据的操作也可以用pandas方便的来做。
花式索引
花式索引(Fancy indexing)是一个NumPy术语,它指的是利用整数数组进行索引。假设我们有一个8×4数组:
In [117]: arr = np.empty((8, 4))
In [118]: for i in range(8):
.....: arr[i] = i
In [119]: arr
Out[119]:
array([[ 0., 0., 0., 0.],
[ 1., 1., 1., 1.],
[ 2., 2., 2., 2.],
[ 3., 3., 3., 3.],
[ 4., 4., 4., 4.],
[ 5., 5., 5., 5.],
[ 6., 6., 6., 6.],
[ 7., 7., 7., 7.]])
为了以特定顺序选取行子集,只需传入一个用于指定顺序的整数列表或ndarray即可:
In [120]: arr[[4, 3, 0, 6]]
Out[120]:
array([[ 4., 4., 4., 4.],
[ 3., 3., 3., 3.],
[ 0., 0., 0., 0.],
[ 6., 6., 6., 6.]])
这段代码确实达到我们的要求了!使用负数索引将会从末尾开始选取行:
In [121]: arr[[-3, -5, -7]]
Out[121]:
array([[ 5., 5., 5., 5.],
[ 3., 3., 3., 3.],
[ 1., 1., 1., 1.]])
一次传入多个索引数组会有一点特别。它返回的是一个一维数组,其中的元素对应各个索引元组:
In [122]: arr = np.arange(32).reshape((8, 4))
In [123]: arr
Out[123]:
array([[ 0, 1, 2, 3],
[ 4, 5, 6, 7],
[ 8, 9, 10, 11],
[12, 13, 14, 15],
[16, 17, 18, 19],
[20, 21, 22, 23],
[24, 25, 26, 27],
[28, 29, 30, 31]])
In [124]: arr[[1, 5, 7, 2], [0, 3, 1, 2]]
Out[124]: array([ 4, 23, 29, 10])
附录A中会详细介绍reshape方法。
最终选出的是元素(1,0)、(5,3)、(7,1)和(2,2)。无论数组是多少维的,花式索引总是一维的。
这个花式索引的行为可能会跟某些用户的预期不一样(包括我在内),选取矩阵的行列子集应该是矩形区域的形式才对。下面是得到该结果的一个办法:
In [125]: arr[[1, 5, 7, 2]][:, [0, 3, 1, 2]]
Out[125]:
array([[ 4, 7, 5, 6],
[20, 23, 21, 22],
[28, 31, 29, 30],
[ 8, 11, 9, 10]])
记住,花式索引跟切片不一样,它总是将数据复制到新数组中。
数组转置和轴对换
转置是重塑的一种特殊形式,它返回的是源数据的视图(不会进行任何复制操作)。数组不仅有transpose方法,还有一个特殊的T属性:
In [126]: arr = np.arange(15).reshape((3, 5))
In [127]: arr
Out[127]:
array([[ 0, 1, 2, 3, 4],
[ 5, 6, 7, 8, 9],
[10, 11, 12, 13, 14]])
In [128]: arr.T
Out[128]:
array([[ 0, 5, 10],
[ 1, 6, 11],
[ 2, 7, 12],
[ 3, 8, 13],
[ 4, 9, 14]])
在进行矩阵计算时,经常需要用到该操作,比如利用np.dot计算矩阵内积:
In [129]: arr = np.random.randn(6, 3)
In [130]: arr
Out[130]:
array([[-0.8608, 0.5601, -1.2659],
[ 0.1198, -1.0635, 0.3329],
[-2.3594, -0.1995, -1.542 ],
[-0.9707, -1.307 , 0.2863],
[ 0.378 , -0.7539, 0.3313],
[ 1.3497, 0.0699, 0.2467]])
In [131]: np.dot(arr.T, arr)
Out[131]:
array([[ 9.2291, 0.9394, 4.948 ],
[ 0.9394, 3.7662, -1.3622],
[ 4.948 , -1.3622, 4.3437]])
对于高维数组,transpose需要得到一个由轴编号组成的元组才能对这些轴进行转置(比较费脑子):
In [132]: arr = np.arange(16).reshape((2, 2, 4))
In [133]: arr
Out[133]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [134]: arr.transpose((1, 0, 2))
Out[134]:
array([[[ 0, 1, 2, 3],
[ 8, 9, 10, 11]],
[[ 4, 5, 6, 7],
[12, 13, 14, 15]]])
这里,第一个轴被换成了第二个,第二个轴被换成了第一个,最后一个轴不变。
简单的转置可以使用.T,它其实就是进行轴对换而已。ndarray还有一个swapaxes方法,它需要接受一对轴编号:
In [135]: arr
Out[135]:
array([[[ 0, 1, 2, 3],
[ 4, 5, 6, 7]],
[[ 8, 9, 10, 11],
[12, 13, 14, 15]]])
In [136]: arr.swapaxes(1, 2)
Out[136]:
array([[[ 0, 4],
[ 1, 5],
[ 2, 6],
[ 3, 7]],
[[ 8, 12],
[ 9, 13],
[10, 14],
[11, 15]]])
swapaxes也是返回源数据的视图(不会进行任何复制操作)。