13.5 继续学习

我只是介绍了一些Python建模库的表面内容,现在有越来越多的框架用于各种统计和机器学习,它们都是用Python或Python用户界面实现的。

这本书的重点是数据规整,有其它的书是关注建模和数据科学工具的。其中优秀的有:

  • Andreas Mueller and Sarah Guido (O’Reilly)的 《Introduction to Machine Learning with Python》
  • Jake VanderPlas (O’Reilly)的 《Python Data Science Handbook》
  • Joel Grus (O’Reilly) 的 《Data Science from Scratch: First Principles》
  • Sebastian Raschka (Packt Publishing) 的《Python Machine Learning》
  • Aurélien Géron (O’Reilly) 的《Hands-On Machine Learning with Scikit-Learn and TensorFlow》

虽然书是学习的好资源,但是随着底层开源软件的发展,书的内容会过时。最好是不断熟悉各种统计和机器学习框架的文档,学习最新的功能和API。