二十四、多个 Y 轴

在这篇 Matplotlib 教程中,我们将介绍如何在同一子图上使用多个 Y 轴。 在我们的例子中,我们有兴趣在同一个图表及同一个子图上绘制股票价格和交易量。

为此,首先我们需要定义一个新的轴域,但是这个轴域是ax2仅带有x轴的『双生子』。

这足以创建轴域了。我们叫它ax2v,因为这个轴域是ax2加交易量。

现在,我们在轴域上定义绘图,我们将添加:

  1. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)

我们在 0 和当前交易量之间填充,给予它蓝色的前景色,然后给予它一个透明度。 我们想要应用幽冥毒,以防交易量最终覆盖其它东西,所以我们仍然可以看到这两个元素。

所以,到现在为止,我们的代码为:

  1. import matplotlib.pyplot as plt
  2. import matplotlib.dates as mdates
  3. import matplotlib.ticker as mticker
  4. from matplotlib.finance import candlestick_ohlc
  5. from matplotlib import style
  6. import numpy as np
  7. import urllib
  8. import datetime as dt
  9. style.use('fivethirtyeight')
  10. print(plt.style.available)
  11. print(plt.__file__)
  12. MA1 = 10
  13. MA2 = 30
  14. def moving_average(values, window):
  15. weights = np.repeat(1.0, window)/window
  16. smas = np.convolve(values, weights, 'valid')
  17. return smas
  18. def high_minus_low(highs, lows):
  19. return highs-lows
  20. def bytespdate2num(fmt, encoding='utf-8'):
  21. strconverter = mdates.strpdate2num(fmt)
  22. def bytesconverter(b):
  23. s = b.decode(encoding)
  24. return strconverter(s)
  25. return bytesconverter
  26. def graph_data(stock):
  27. fig = plt.figure()
  28. ax1 = plt.subplot2grid((6,1), (0,0), rowspan=1, colspan=1)
  29. plt.title(stock)
  30. plt.ylabel('H-L')
  31. ax2 = plt.subplot2grid((6,1), (1,0), rowspan=4, colspan=1, sharex=ax1)
  32. plt.ylabel('Price')
  33. ax2v = ax2.twinx()
  34. ax3 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1)
  35. plt.ylabel('MAvgs')
  36. stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1y/csv'
  37. source_code = urllib.request.urlopen(stock_price_url).read().decode()
  38. stock_data = []
  39. split_source = source_code.split('\n')
  40. for line in split_source:
  41. split_line = line.split(',')
  42. if len(split_line) == 6:
  43. if 'values' not in line and 'labels' not in line:
  44. stock_data.append(line)
  45. date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
  46. delimiter=',',
  47. unpack=True,
  48. converters={0: bytespdate2num('%Y%m%d')})
  49. x = 0
  50. y = len(date)
  51. ohlc = []
  52. while x < y:
  53. append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
  54. ohlc.append(append_me)
  55. x+=1
  56. ma1 = moving_average(closep,MA1)
  57. ma2 = moving_average(closep,MA2)
  58. start = len(date[MA2-1:])
  59. h_l = list(map(high_minus_low, highp, lowp))
  60. ax1.plot_date(date[-start:],h_l[-start:],'-')
  61. ax1.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='lower'))
  62. candlestick_ohlc(ax2, ohlc[-start:], width=0.4, colorup='#77d879', colordown='#db3f3f')
  63. ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=7, prune='upper'))
  64. ax2.grid(True)
  65. bbox_props = dict(boxstyle='round',fc='w', ec='k',lw=1)
  66. ax2.annotate(str(closep[-1]), (date[-1], closep[-1]),
  67. xytext = (date[-1]+4, closep[-1]), bbox=bbox_props)
  68. ## # Annotation example with arrow
  69. ## ax2.annotate('Bad News!',(date[11],highp[11]),
  70. ## xytext=(0.8, 0.9), textcoords='axes fraction',
  71. ## arrowprops = dict(facecolor='grey',color='grey'))
  72. ##
  73. ##
  74. ## # Font dict example
  75. ## font_dict = {'family':'serif',
  76. ## 'color':'darkred',
  77. ## 'size':15}
  78. ## # Hard coded text
  79. ## ax2.text(date[10], closep[1],'Text Example', fontdict=font_dict)
  80. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)
  81. ax3.plot(date[-start:], ma1[-start:], linewidth=1)
  82. ax3.plot(date[-start:], ma2[-start:], linewidth=1)
  83. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
  84. where=(ma1[-start:] < ma2[-start:]),
  85. facecolor='r', edgecolor='r', alpha=0.5)
  86. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
  87. where=(ma1[-start:] > ma2[-start:]),
  88. facecolor='g', edgecolor='g', alpha=0.5)
  89. ax3.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
  90. ax3.xaxis.set_major_locator(mticker.MaxNLocator(10))
  91. ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
  92. for label in ax3.xaxis.get_ticklabels():
  93. label.set_rotation(45)
  94. plt.setp(ax1.get_xticklabels(), visible=False)
  95. plt.setp(ax2.get_xticklabels(), visible=False)
  96. plt.subplots_adjust(left=0.11, bottom=0.24, right=0.90, top=0.90, wspace=0.2, hspace=0)
  97. plt.show()
  98. graph_data('GOOG')

会生成:

二十四、多个 Y 轴 - 图1

太棒了,到目前为止还不错。 接下来,我们可能要删除新y轴上的标签,然后我们也可能不想让交易量占用太多空间。 没问题:

首先:

  1. ax2v.axes.yaxis.set_ticklabels([])

上面将y刻度标签设置为一个空列表,所以不会有任何标签了。

译者注:所以将标签删除之后,添加新轴的意义是什么?直接在原轴域上绘图就可以了。

接下来,我们可能要将网格设置为false,使轴域上不会有双网格:

  1. ax2v.grid(False)

最后,为了处理交易量占用很多空间,我们可以做以下操作:

  1. ax2v.set_ylim(0, 3*volume.max())

所以这设置y轴显示范围从 0 到交易量的最大值的 3 倍。 这意味着,在最高点,交易量最多可占据图形的33%。 所以,增加volume.max的倍数越多,空间就越小/越少。

现在,我们的图表为:

  1. import matplotlib.pyplot as plt
  2. import matplotlib.dates as mdates
  3. import matplotlib.ticker as mticker
  4. from matplotlib.finance import candlestick_ohlc
  5. from matplotlib import style
  6. import numpy as np
  7. import urllib
  8. import datetime as dt
  9. style.use('fivethirtyeight')
  10. print(plt.style.available)
  11. print(plt.__file__)
  12. MA1 = 10
  13. MA2 = 30
  14. def moving_average(values, window):
  15. weights = np.repeat(1.0, window)/window
  16. smas = np.convolve(values, weights, 'valid')
  17. return smas
  18. def high_minus_low(highs, lows):
  19. return highs-lows
  20. def bytespdate2num(fmt, encoding='utf-8'):
  21. strconverter = mdates.strpdate2num(fmt)
  22. def bytesconverter(b):
  23. s = b.decode(encoding)
  24. return strconverter(s)
  25. return bytesconverter
  26. def graph_data(stock):
  27. fig = plt.figure()
  28. ax1 = plt.subplot2grid((6,1), (0,0), rowspan=1, colspan=1)
  29. plt.title(stock)
  30. plt.ylabel('H-L')
  31. ax2 = plt.subplot2grid((6,1), (1,0), rowspan=4, colspan=1, sharex=ax1)
  32. plt.ylabel('Price')
  33. ax2v = ax2.twinx()
  34. ax3 = plt.subplot2grid((6,1), (5,0), rowspan=1, colspan=1, sharex=ax1)
  35. plt.ylabel('MAvgs')
  36. stock_price_url = 'http://chartapi.finance.yahoo.com/instrument/1.0/'+stock+'/chartdata;type=quote;range=1y/csv'
  37. source_code = urllib.request.urlopen(stock_price_url).read().decode()
  38. stock_data = []
  39. split_source = source_code.split('\n')
  40. for line in split_source:
  41. split_line = line.split(',')
  42. if len(split_line) == 6:
  43. if 'values' not in line and 'labels' not in line:
  44. stock_data.append(line)
  45. date, closep, highp, lowp, openp, volume = np.loadtxt(stock_data,
  46. delimiter=',',
  47. unpack=True,
  48. converters={0: bytespdate2num('%Y%m%d')})
  49. x = 0
  50. y = len(date)
  51. ohlc = []
  52. while x < y:
  53. append_me = date[x], openp[x], highp[x], lowp[x], closep[x], volume[x]
  54. ohlc.append(append_me)
  55. x+=1
  56. ma1 = moving_average(closep,MA1)
  57. ma2 = moving_average(closep,MA2)
  58. start = len(date[MA2-1:])
  59. h_l = list(map(high_minus_low, highp, lowp))
  60. ax1.plot_date(date[-start:],h_l[-start:],'-')
  61. ax1.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='lower'))
  62. candlestick_ohlc(ax2, ohlc[-start:], width=0.4, colorup='#77d879', colordown='#db3f3f')
  63. ax2.yaxis.set_major_locator(mticker.MaxNLocator(nbins=7, prune='upper'))
  64. ax2.grid(True)
  65. bbox_props = dict(boxstyle='round',fc='w', ec='k',lw=1)
  66. ax2.annotate(str(closep[-1]), (date[-1], closep[-1]),
  67. xytext = (date[-1]+5, closep[-1]), bbox=bbox_props)
  68. ## # Annotation example with arrow
  69. ## ax2.annotate('Bad News!',(date[11],highp[11]),
  70. ## xytext=(0.8, 0.9), textcoords='axes fraction',
  71. ## arrowprops = dict(facecolor='grey',color='grey'))
  72. ##
  73. ##
  74. ## # Font dict example
  75. ## font_dict = {'family':'serif',
  76. ## 'color':'darkred',
  77. ## 'size':15}
  78. ## # Hard coded text
  79. ## ax2.text(date[10], closep[1],'Text Example', fontdict=font_dict)
  80. ax2v.fill_between(date[-start:],0, volume[-start:], facecolor='#0079a3', alpha=0.4)
  81. ax2v.axes.yaxis.set_ticklabels([])
  82. ax2v.grid(False)
  83. ax2v.set_ylim(0, 3*volume.max())
  84. ax3.plot(date[-start:], ma1[-start:], linewidth=1)
  85. ax3.plot(date[-start:], ma2[-start:], linewidth=1)
  86. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
  87. where=(ma1[-start:] < ma2[-start:]),
  88. facecolor='r', edgecolor='r', alpha=0.5)
  89. ax3.fill_between(date[-start:], ma2[-start:], ma1[-start:],
  90. where=(ma1[-start:] > ma2[-start:]),
  91. facecolor='g', edgecolor='g', alpha=0.5)
  92. ax3.xaxis.set_major_formatter(mdates.DateFormatter('%Y-%m-%d'))
  93. ax3.xaxis.set_major_locator(mticker.MaxNLocator(10))
  94. ax3.yaxis.set_major_locator(mticker.MaxNLocator(nbins=4, prune='upper'))
  95. for label in ax3.xaxis.get_ticklabels():
  96. label.set_rotation(45)
  97. plt.setp(ax1.get_xticklabels(), visible=False)
  98. plt.setp(ax2.get_xticklabels(), visible=False)
  99. plt.subplots_adjust(left=0.11, bottom=0.24, right=0.90, top=0.90, wspace=0.2, hspace=0)
  100. plt.show()
  101. graph_data('GOOG')

到这里,我们差不多完成了。 这里唯一的缺陷是一个好的图例。 一些线条是显而易见的,但人们可能会好奇移动均值的参数是什么,我们这里是 10 和 30。 添加自定义图例是下一个教程中涉及的内容。