Geographic and polar plots
ProPlot includes features for working with polar axes and the cartopy and basemap map projection packages. These features are optional – installation of cartopy and basemap are not required.
To change the axes projection, pass proj='name'
to subplots
. To use different projections for different subplots, pass a dictionary of projection names with the subplot number as the key – for example, proj={1: 'name'}
. The default “projection” is always CartesianAxes
.
Polar axes
To draw polar axes, pass proj='polar'
or e.g. proj={1:'polar'}
to subplots
. This generates a PolarAxes
instance with its own proplot.axes.PolarAxes.format
command. This command permits polar-specific modifications like changing the central radius r0
, the zero azimuth location theta0
, and the positive azimuthal direction thetadir
. It also supports changing the radial and azimuthal limits rlim
and thetalim
, which can be used to make sector plots and annular plots.
For details, see proplot.axes.PolarAxes.format
.
[1]:
import proplot as plot
import numpy as np
N = 200
state = np.random.RandomState(51423)
x = np.linspace(0, 2 * np.pi, N)
y = 100 * (state.rand(N, 5) - 0.3).cumsum(axis=0) / N
fig, axs = plot.subplots([[1, 1, 2, 2], [0, 3, 3, 0]], proj='polar')
axs.format(
suptitle='Polar axes demo', linewidth=1, titlepad='1em',
ticklabelsize=9, rlines=0.5, rlim=(0, 19),
)
for i in range(5):
xi = x + i * 2 * np.pi / 5
axs.plot(xi, y[:, i], cycle='FlatUI', zorder=0, lw=3)
# Standard polar plot
axs[0].format(
title='Normal plot', thetaformatter='tau',
rlabelpos=225, rlines=plot.arange(5, 30, 5),
color='red8', tickpad='1em',
)
# Sector plot
axs[1].format(
title='Sector plot', thetadir=-1, thetalines=90, thetalim=(0, 270), theta0='N',
rlim=(0, 22), rlines=plot.arange(5, 30, 5),
)
# Annular plot
axs[2].format(
title='Annular plot', thetadir=-1, thetalines=20, gridcolor='red',
r0=-20, rlim=(0, 22), rformatter='null', rlocator=2
)
Geographic axes
ProPlot can turn any subplot into a geographic projection using the cartopy or basemap packages as “backends”. The syntax with cartopy as the backend is exactly the same as when basemap is the backend.
To turn a subplot into a geographic projection, pass proj='name'
or e.g. proj={2: 'name'}
(see above) to subplots
where name
is any valid PROJ projection name. You can also generate a cartopy.crs.Projection
or mpl_toolkits.basemap.Basemap
instance directly using the Proj
constructor function and pass the class instance to proj
.
subplots
returns instances of proplot.axes.CartopyAxes
or proplot.axes.BasemapAxes
, depending on whether basemap=True
was used. Both of these derive from proplot.axes.GeoAxes
, which includes a format
method that can be used to control various geographic features with the same syntax whether cartopy or basemap is the backend.
proplot.axes.CartopyAxes
unifies cartopy’sGeoAxes
class with theproplot.axes.Axes
class. Theformat
method changes map bounds withset_extent
, adds major and minor gridlines withgridlines
, and adds geographic features withadd_feature
.BasemapAxes
redirects the plot, scatter, contour, contourf, pcolor, pcolormesh, quiver, streamplot, and barb axes methods to identically named methods on theBasemap
instance. This means you can work with axes plotting methods rather than the basemap methods, just like cartopy. Theformat
method adds major and minor gridlines withdrawmeridians
anddrawparallels
and adds geographic features with commands likefillcontinents
anddrawcoastlines
. In case you need to use it, the correspondingBasemap
instance is available via theproplot.axes.BasemapAxes.projection
attribute.
These features mean you no longer have to invoke verbose cartopy classes like LambertAzimuthalEqualArea
and NaturalEarthFeature
, and you no longer have to directly work with the Basemap
instance. In the below examples, we create a variety of geographic plots with both cartopy and basemap as the backends.
Note
ProPlot ensures that polar cartopy projections like
NorthPolarStereo
have circular boundaries (see this example from the cartopy website).By default, non-polar cartopy projections are forced to have global extent with
set_global
and polar cartopy projections are bounded at the equator. This stands in contrast to the default cartopy behavior, where map boundaries are determined automatically based on the coordinates of the plotted content. To revert to cartopy’s default behavior, set[rc[‘cartopy.autoextent’]](https://proplot.readthedocs.io/en/latest/configuration.html?highlight=cartopy.autoextent#rc-proplot)
toTrue
or passautoextent=True
toCartopyAxes
.To make things more consistent between cartopy and basemap, the
Proj
constructor function lets you supply native PROJ keyword names for the cartopyProjection
classes (e.g.lon_0
instead ofcentral_longitude
) and instantiatesBasemap
projections with sensible default PROJ parameters rather than raising an error when they are omitted (e.g.lon_0=0
as the default for most projections).
Warning
Basemap is no longer a maintained package. However as shown below, gridline labels tend to look much nicer in basemap than in cartopy – especially when “inline” cartopy labels are disabled. This is the main reason ProPlot continues to support both basemap and cartopy. When cartopy catches up, basemap support may be deprecated.
[2]:
# Simple figure with just one projection
# Option 1: Create a projection manually with plot.Proj()
# immport proplot as plot
# proj = plot.Proj('robin', lon_0=180)
# fig, axs = plot.subplots(nrows=2, axwidth=3, proj=proj)
# Option 2: Pass the name to 'proj' and keyword arguments to 'proj_kw'
import proplot as plot
fig, axs = plot.subplots(nrows=2, axwidth=3, proj='robin', proj_kw={'lon_0': 180})
axs.format(
suptitle='Figure with single projection',
coast=True, latlines=30, lonlines=60,
)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/110m/physical/ne_110m_coastline.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
[3]:
# Complex figure with different projections
import proplot as plot
fig, axs = plot.subplots(
ncols=2, nrows=3,
hratios=(1, 1, 1.4),
basemap=(False, True, False, True, False, True), # cartopy column 1
proj=('cyl', 'cyl', 'hammer', 'hammer', 'npstere', 'npstere'),
)
axs.format(
suptitle='Figure with several projections',
collabels=['Cartopy projections', 'Basemap projections'],
coast=True, latlines=20, lonlines=30,
lonlabels='b', latlabels='r', # or lonlabels=True, labels=True, etc.
)
axs[0, :].format(latlines=30, lonlines=60, labels=True)
plot.rc.reset()
Warning: Cannot label meridians on Hammer basemap
Plotting geographic data
In ProPlot, plotting in GeoAxes
is not much different from plotting in CartesianAxes
. ProPlot makes longitude-latitude (i.e. Plate Carrée) coordinates the default coordinate system for your datasets by passing transform=ccrs.PlateCarree()
to cartopy plotting commands and latlon=True
to basemap plotting commands. And again, basemap plotting commands are invoked from the proplot.axes.GeoAxes
rather than from the Basemap
instance.
To ensure 2D plots like contour
cover the entire globe, pass globe=True
to the plotting command. This interpolates your data to the poles and across the longitude seams before plotting, having the same effect as cartopy’s add_cyclic_point
function and basemap’s addcyclic
function.
Geographic feature can be drawn underneath data or on top of data by changing the corresponding zorder rc setting. For example, to draw land patches on top of all plotted content as a “land mask,” use ax.format(land=True, landzorder=4)
. See the next section for details.
[4]:
import proplot as plot
import numpy as np
# Fake data with unusual longitude seam location and without coverage over poles
offset = -40
lon = plot.arange(offset, 360 + offset - 1, 60)
lat = plot.arange(-60, 60 + 1, 30)
state = np.random.RandomState(51423)
data = state.rand(len(lat), len(lon))
# Plot data both without and with globe=True
for globe in (False, True,):
string = 'with' if globe else 'without'
fig, axs = plot.subplots(
ncols=2, nrows=2, axwidth=2.5,
proj='kav7', basemap={(1, 3): False, (2, 4): True}
)
axs.format(
suptitle=f'Geophysical data {string} global coverage',
collabels=['Cartopy example', 'Basemap example'],
rowlabels=['Contourf', 'Pcolormesh'],
abc=True, abcstyle='a)', abcloc='ul', abcborder=False,
coast=True, lonlines=90,
)
for i, ax in enumerate(axs):
cmap = ('sunset', 'sunrise')[i % 2]
if i < 2:
m = ax.contourf(lon, lat, data, cmap=cmap, globe=globe, extend='both')
fig.colorbar(m, loc='b', span=i + 1, label='values', extendsize='1.7em')
else:
ax.pcolor(lon, lat, data, cmap=cmap, globe=globe, extend='both')
Formatting projections
CartopyAxes
and BasemapAxes
both derive from proplot.axes.GeoAxes
, which provides a format
method. This can be used to draw “major” gridlines “minor” gridlines. Gridline locations and label formats can be configured with the lonlocator
, latlocator
, lonformatter
, latformatter
, lonminorlocator
, and latminorlocator
keywords. Major gridline labels and their positions can be configured with the labels
, lonlabels
, and latlabels
keywords. Cartopy map bounds can be set with the lonlim
, latlim
, and boundinglat
keywords. Geographic features like land masses, coastlines, and administrative borders can be toggled on and off and stylized with a variety of rc settings. Finally, proplot.axes.GeoAxes.format
also calls proplot.axes.Axes.format
, and so can be used to for subplot titles, a-b-c labels, and figure titles as before.
For details, see the proplot.axes.GeoAxes.format
documentation.
[5]:
import proplot as plot
fig, axs = plot.subplots(
[[1, 1, 2], [3, 3, 3]],
axwidth=4, proj={1: 'eqearth', 2: 'ortho', 3: 'wintri'},
wratios=(1, 1, 1.2), hratios=(1, 1.2),
)
axs.format(
suptitle='Projection axes formatting demo',
collabels=['Column 1', 'Column 2'],
abc=True, abcstyle='A.', abcloc='ul', abcborder=False, linewidth=1.5
)
# Styling projections in different ways
ax = axs[0]
ax.format(
title='Equal earth', land=True, landcolor='navy', facecolor='pale blue',
coastcolor='gray5', borderscolor='gray5', innerborderscolor='gray5',
gridlinewidth=1.5, gridcolor='gray5', gridalpha=0.5,
gridminor=True, gridminorlinewidth=0.5,
coast=True, borders=True, borderslinewidth=0.8,
)
ax = axs[1]
ax.format(
title='Orthographic', reso='med', land=True, coast=True, latlines=10, lonlines=15,
landcolor='mushroom', suptitle='Projection axes formatting demo',
facecolor='petrol', coastcolor='charcoal', coastlinewidth=0.8, gridlinewidth=1
)
ax = axs[2]
ax.format(
land=True, facecolor='ocean blue', landcolor='bisque', title='Winkel tripel',
lonlines=60, latlines=15,
gridlinewidth=0.8, gridminor=True, gridminorlinestyle=':',
lonlabels=True, latlabels='r', loninline=True,
gridlabelcolor='gray8', gridlabelsize='med-large',
)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/110m/physical/ne_110m_land.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/110m/cultural/ne_110m_admin_0_boundary_lines_land.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/50m/physical/ne_50m_land.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/50m/physical/ne_50m_coastline.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
Zooming into projections
To zoom into cartopy projections, use set_extent
or pass lonlim
, latlim
, or boundinglat
to format
. The boundinglat
keyword controls the circular latitude boundary for North Polar and South Polar Stereographic, Azimuthal Equidistant, Lambert Azimuthal Equal-Area, and Gnomonic projections. By default, ProPlot tries to use the degree-minute-second cartopy locators and formatters made available in cartopy 0.18. You can switch from minute-second subintervals to traditional decimal subintervals by passing dms=False
to format
.
To zoom into basemap projections, pass any of the boundinglat
, llcrnrlon
, llcrnrlat
, urcrnrlon
, urcrnrlat
, llcrnrx
, llcrnry
, urcrnrx
, urcrnry
, width
, or height
keyword arguments to the Proj
constructor function either directly or via the proj_kw
subplots
keyword argument. You can also pass lonlim
and latlim
to Proj
and these arguments will be used for llcrnrlon
, llcrnrlat
, etc. You can not zoom into basemap projections with format
after they have already been created.
[6]:
import proplot as plot
# Plate Carrée map projection
plot.rc.reso = 'med' # use higher res for zoomed in geographic features
proj = plot.Proj('cyl', lonlim=(-20, 180), latlim=(-10, 50), basemap=True)
fig, axs = plot.subplots(nrows=2, axwidth=5, proj=('cyl', proj))
axs.format(
land=True, labels=True, lonlines=20, latlines=20,
gridminor=True, suptitle='Zooming into projections'
)
axs[0].format(
lonlim=(-140, 60), latlim=(-10, 50),
labels=True, title='Cartopy example'
)
axs[1].format(title='Basemap example')
[7]:
import proplot as plot
# Pole-centered map projections
proj = plot.Proj('npaeqd', boundinglat=60, basemap=True)
fig, axs = plot.subplots(ncols=2, axwidth=2.7, proj=('splaea', proj))
axs.format(
land=True, latmax=80, # no gridlines poleward of 80 degrees
suptitle='Zooming into polar projections'
)
axs[0].format(boundinglat=-60, title='Cartopy example')
axs[1].format(title='Basemap example')
[8]:
import proplot as plot
# Zooming in on continents
proj1 = plot.Proj('lcc', lon_0=0) # cartopy projection
proj2 = plot.Proj('lcc', lon_0=-100, lat_0=45, width=8e6, height=8e6, basemap=True)
fig, axs = plot.subplots(ncols=2, axwidth=3, proj=(proj1, proj2))
axs.format(suptitle='Zooming into specific regions', land=True)
axs[0].format(lonlim=(-20, 50), latlim=(30, 70), title='Cartopy example')
axs[1].format(lonlines=20, title='Basemap example')
# Zooming to very small scale with degree-minute-second labels
plot.rc.reso = 'hi'
fig, axs = plot.subplots(ncols=2, axwidth=2.5, proj='cyl')
axs.format(
land=True, labels=True,
borders=True, borderscolor='white',
suptitle='Degree-minute-second labels',
)
axs[0].format(lonlim=(-7.5, 2), latlim=(49.5, 59))
axs[1].format(lonlim=(-6, -2), latlim=(54.5, 58.5))
plot.rc.reset()
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/10m/physical/ne_10m_land.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/io/__init__.py:260: DownloadWarning: Downloading: https://naciscdn.org/naturalearth/10m/cultural/ne_10m_admin_0_boundary_lines_land.zip
warnings.warn('Downloading: {}'.format(url), DownloadWarning)
Included projections
The available cartopy and basemap projections are plotted below. See Proj
for a table of projection names with links to the relevant PROJ documentation.
ProPlot uses the cartopy API to add the Aitoff, Hammer, Winkel Tripel, and Kavrisky VII projections (i.e. 'aitoff'
, 'hammer'
, 'wintri'
, and 'kav7'
), as well as North and South polar versions of the Azimuthal Equidistant, Lambert Azimuthal Equal-Area, and Gnomic projections (i.e. 'npaeqd'
, 'spaeqd'
, 'nplaea'
, 'splaea'
, 'npgnom'
, and 'spgnom'
), modeled after the existing NorthPolarStereo
and SouthPolarStereo
projections.
[9]:
import proplot as plot
# Table of cartopy projections
projs = [
'cyl', 'merc', 'mill', 'lcyl', 'tmerc',
'robin', 'hammer', 'moll', 'kav7', 'aitoff', 'wintri', 'sinu',
'geos', 'ortho', 'nsper', 'aea', 'eqdc', 'lcc', 'gnom',
'npstere', 'nplaea', 'npaeqd', 'npgnom', 'igh',
'eck1', 'eck2', 'eck3', 'eck4', 'eck5', 'eck6'
]
fig, axs = plot.subplots(ncols=3, nrows=10, width=7, proj=projs)
axs.format(
land=True, reso='lo', labels=False,
suptitle='Table of cartopy projections'
)
for proj, ax in zip(projs, axs):
ax.format(title=proj, titleweight='bold', labels=False)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/proplot/constructor.py:1433: UserWarning: The default value for the *approx* keyword argument to TransverseMercator will change from True to False after 0.18.
proj = crs(**kwproj)
/home/docs/checkouts/readthedocs.org/user_builds/proplot/conda/v0.6.4/lib/python3.8/site-packages/cartopy/mpl/feature_artist.py:154: UserWarning: Unable to determine extent. Defaulting to global.
warnings.warn('Unable to determine extent. Defaulting to global.')
[10]:
import proplot as plot
# Table of basemap projections
projs = [
'cyl', 'merc', 'mill', 'cea', 'gall', 'sinu',
'eck4', 'robin', 'moll', 'kav7', 'hammer', 'mbtfpq',
'geos', 'ortho', 'nsper',
'vandg', 'aea', 'eqdc', 'gnom', 'cass', 'lcc',
'npstere', 'npaeqd', 'nplaea'
]
fig, axs = plot.subplots(ncols=3, nrows=8, basemap=True, width=7, proj=projs)
axs.format(
land=True, labels=False,
suptitle='Table of basemap projections'
)
for proj, ax in zip(projs, axs):
ax.format(title=proj, titleweight='bold', labels=False)