时序 4 种类型
Prometheus 时序数据分为 Counter, Gauge, Histogram, Summary 四种类型。
Counter
Counter 表示收集的数据是按照某个趋势(增加/减少)一直变化的,我们往往用它记录服务请求总量、错误总数等。
例如 Prometheus server 中 http_requests_total
, 表示 Prometheus 处理的 http 请求总数,我们可以使用 delta
, 很容易得到任意区间数据的增量,这个会在 PromQL 一节中细讲。
Gauge
Gauge 表示搜集的数据是一个瞬时的值,与时间没有关系,可以任意变高变低,往往可以用来记录内存使用率、磁盘使用率等。
例如 Prometheus server 中 go_goroutines
, 表示 Prometheus 当前 goroutines 的数量。
Histogram
Histogram 由 <basename>_bucket{le="<upper inclusive bound>"}
,<basename>_bucket{le="+Inf"}
, <basename>_sum
,<basename>_count
组成,主要用于表示一段时间范围内对数据进行采样(通常是请求持续时间或响应大小),并能够对其指定区间以及总数进行统计,通常它采集的数据展示为直方图。
例如 Prometheus server 中 prometheus_local_storage_series_chunks_persisted
, 表示 Prometheus 中每个时序需要存储的 chunks 数量,我们可以用它计算待持久化的数据的分位数。
Summary
Summary 和 Histogram 类似,由 <basename>{quantile="<φ>"}
,<basename>_sum
,<basename>_count
组成,主要用于表示一段时间内数据采样结果(通常是请求持续时间或响应大小),它直接存储了 quantile 数据,而不是根据统计区间计算出来的。
例如 Prometheus server 中 prometheus_target_interval_length_seconds
。
Histogram vs Summary
- 都包含
<basename>_sum
,<basename>_count
- Histogram 需要通过
<basename>_bucket
计算 quantile, 而 Summary 直接存储了 quantile 的值。