Alertmanager高可用

在上一小节中我们主要讨论了Prometheus Server自身的高可用问题。而接下来,重点将放在告警处理也就是Alertmanager部分。如下所示。

Alertmanager成为单点

为了提升Promthues的服务可用性,通常用户会部署两个或者两个以上的Promthus Server,它们具有完全相同的配置包括Job配置,以及告警配置等。当某一个Prometheus Server发生故障后可以确保Promthues持续可用。

同时基于Alertmanager的告警分组机制即使不同的Prometheus Sever分别发送相同的告警给Alertmanager,Alertmanager也可以自动将这些告警合并为一个通知向receiver发送。

Alertmanager特性

但不幸的是,虽然Alertmanager能够同时处理多个相同的Prometheus Server所产生的告警。但是由于单个Alertmanager的存在,当前的部署结构存在明显的单点故障风险,当Alertmanager单点失效后,告警的后续所有业务全部失效。

如下所示,最直接的方式,就是尝试部署多套Alertmanager。但是由于Alertmanager之间不存在并不了解彼此的存在,因此则会出现告警通知被不同的Alertmanager重复发送多次的问题。

Alertmanager高可用 - 图3

为了解决这一问题,如下所示。Alertmanager引入了Gossip机制。Gossip机制为多个Alertmanager之间提供了信息传递的机制。确保及时在多个Alertmanager分别接收到相同告警信息的情况下,也只有一个告警通知被发送给Receiver。

Alertmanager Gossip

Gossip协议

Gossip是分布式系统中被广泛使用的协议,用于实现分布式节点之间的信息交换和状态同步。Gossip协议同步状态类似于流言或者病毒的传播,如下所示:

Gossip分布式协议

一般来说Gossip有两种实现方式分别为Push-based和Pull-based。在Push-based当集群中某一节点A完成一个工作后,随机的从其它节点B并向其发送相应的消息,节点B接收到消息后在重复完成相同的工作,直到传播到集群中的所有节点。而Pull-based的实现中节点A会随机的向节点B发起询问是否有新的状态需要同步,如果有则返回。

在简单了解了Gossip协议之后,我们来看Alertmanager是如何基于Gossip协议实现集群高可用的。如下所示,当Alertmanager接收到来自Prometheus的告警消息后,会按照以下流程对告警进行处理:

通知流水线

  1. 在第一个阶段Silence中,Alertmanager会判断当前通知是否匹配到任何的静默规则,如果没有则进入下一个阶段,否则则中断流水线不发送通知。
  2. 在第二个阶段Wait中,Alertmanager会根据当前Alertmanager在集群中所在的顺序(index)等待index * 5s的时间。
  3. 当前Alertmanager等待阶段结束后,Dedup阶段则会判断当前Alertmanager数据库中该通知是否已经发送,如果已经发送则中断流水线,不发送告警,否则则进入下一阶段Send对外发送告警通知。
  4. 告警发送完成后该Alertmanager进入最后一个阶段Gossip,Gossip会通知其他Alertmanager实例当前告警已经发送。其他实例接收到Gossip消息后,则会在自己的数据库中保存该通知已发送的记录。

因此如下所示,Gossip机制的关键在于两点:

Gossip机制

  • Silence设置同步:Alertmanager启动阶段基于Pull-based从集群其它节点同步Silence状态,当有新的Silence产生时使用Push-based方式在集群中传播Gossip信息。
  • 通知发送状态同步:告警通知发送完成后,基于Push-based同步告警发送状态。Wait阶段可以确保集群状态一致。

Alertmanager基于Gossip实现的集群机制虽然不能保证所有实例上的数据时刻保持一致,但是实现了CAP理论中的AP系统,即可用性和分区容错性。同时对于Prometheus Server而言保持了配置了简单性,Promthues Server之间不需要任何的状态同步。

搭建本地集群环境

为了能够让Alertmanager节点之间进行通讯,需要在Alertmanager启动时设置相应的参数。其中主要的参数包括:

  • —cluster.listen-address string: 当前实例集群服务监听地址
  • —cluster.peer value: 初始化时关联的其它实例的集群服务地址

例如:

定义Alertmanager实例a1,其中Alertmanager的服务运行在9093端口,集群服务地址运行在8001端口。

  1. alertmanager --web.listen-address=":9093" --cluster.listen-address="127.0.0.1:8001" --config.file=/etc/prometheus/alertmanager.yml --storage.path=/data/alertmanager/

定义Alertmanager实例a2,其中主服务运行在9094端口,集群服务运行在8002端口。为了将a1,a2组成集群。 a2启动时需要定义—cluster.peer参数并且指向a1实例的集群服务地址:8001。

  1. alertmanager --web.listen-address=":9094" --cluster.listen-address="127.0.0.1:8002" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager.yml --storage.path=/data/alertmanager2/

为了能够在本地模拟集群环境,这里使用了一个轻量级的多线程管理工具goreman。使用以下命令可以在本地安装goreman命令行工具。

  1. go get github.com/mattn/goreman

创建Alertmanager集群

创建Alertmanager配置文件/etc/prometheus/alertmanager-ha.yml, 为了验证Alertmanager的集群行为,这里在本地启动一个webhook服务用于打印Alertmanager发送的告警通知信息。

  1. route:
  2. receiver: 'default-receiver'
  3. receivers:
  4. - name: default-receiver
  5. webhook_configs:
  6. - url: 'http://127.0.0.1:5001/'

本地webhook服务可以直接从Github获取。

  1. # 获取alertmanager提供的webhook示例,如果该目录下定义了main函数,go get会自动将其编译成可执行文件
  2. go get github.com/prometheus/alertmanager/examples/webhook
  3. # 设置环境变量指向GOPATH的bin目录
  4. export PATH=$GOPATH/bin:$PATH
  5. # 启动服务
  6. webhook

示例结构如下所示:

Alertmanager HA部署结构

创建alertmanager.procfile文件,并且定义了三个Alertmanager节点(a1,a2,a3)以及用于接收告警通知的webhook服务:

  1. a1: alertmanager --web.listen-address=":9093" --cluster.listen-address="127.0.0.1:8001" --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager/ --log.level=debug
  2. a2: alertmanager --web.listen-address=":9094" --cluster.listen-address="127.0.0.1:8002" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager2/ --log.level=debug
  3. a3: alertmanager --web.listen-address=":9095" --cluster.listen-address="127.0.0.1:8003" --cluster.peer=127.0.0.1:8001 --config.file=/etc/prometheus/alertmanager-ha.yml --storage.path=/data/alertmanager2/ --log.level=debug
  4. webhook: webhook

在Procfile文件所在目录,执行goreman start命令,启动所有进程:

  1. $ goreman -f alertmanager.procfile start
  2. 10:27:57 a1 | level=debug ts=2018-03-12T02:27:57.399166371Z caller=cluster.go:125 component=cluster msg="joined cluster" peers=0
  3. 10:27:57 a3 | level=info ts=2018-03-12T02:27:57.40004678Z caller=main.go:346 msg=Listening address=:9095
  4. 10:27:57 a1 | level=info ts=2018-03-12T02:27:57.400212246Z caller=main.go:271 msg="Loading configuration file" file=/etc/prometheus/alertmanager.yml
  5. 10:27:57 a1 | level=info ts=2018-03-12T02:27:57.405638714Z caller=main.go:346 msg=Listening address=:9093

启动完成后访问任意Alertmanager节点http://localhost:9093/#/status,可以查看当前Alertmanager集群的状态。

Alertmanager集群状态

当集群中的Alertmanager节点不在一台主机时,通常需要使用—cluster.advertise-address参数指定当前节点所在网络地址。

注意:由于goreman不保证进程之间的启动顺序,如果集群状态未达到预期,可以使用goreman -f alertmanager.procfile run restart a2重启a2,a3服务。

当Alertmanager集群启动完成后,可以使用send-alerts.sh脚本对集群进行简单测试,这里利用curl分别向3个Alertmanager实例发送告警信息。

  1. alerts1='[
  2. {
  3. "labels": {
  4. "alertname": "DiskRunningFull",
  5. "dev": "sda1",
  6. "instance": "example1"
  7. },
  8. "annotations": {
  9. "info": "The disk sda1 is running full",
  10. "summary": "please check the instance example1"
  11. }
  12. },
  13. {
  14. "labels": {
  15. "alertname": "DiskRunningFull",
  16. "dev": "sdb2",
  17. "instance": "example2"
  18. },
  19. "annotations": {
  20. "info": "The disk sdb2 is running full",
  21. "summary": "please check the instance example2"
  22. }
  23. },
  24. {
  25. "labels": {
  26. "alertname": "DiskRunningFull",
  27. "dev": "sda1",
  28. "instance": "example3",
  29. "severity": "critical"
  30. }
  31. },
  32. {
  33. "labels": {
  34. "alertname": "DiskRunningFull",
  35. "dev": "sda1",
  36. "instance": "example3",
  37. "severity": "warning"
  38. }
  39. }
  40. ]'
  41. curl -XPOST -d"$alerts1" http://localhost:9093/api/v1/alerts
  42. curl -XPOST -d"$alerts1" http://localhost:9094/api/v1/alerts
  43. curl -XPOST -d"$alerts1" http://localhost:9095/api/v1/alerts

运行send-alerts.sh后,查看alertmanager日志,可以看到以下输出,3个Alertmanager实例分别接收到模拟的告警信息:

  1. 10:43:36 a1 | level=debug ts=2018-03-12T02:43:36.853370185Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[6543bc1][active]
  2. 10:43:36 a2 | level=debug ts=2018-03-12T02:43:36.871180749Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[8320f0a][active]
  3. 10:43:36 a3 | level=debug ts=2018-03-12T02:43:36.894923811Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=DiskRunningFull[8320f0a][active]

查看webhook日志只接收到一个告警通知:

  1. 10:44:06 webhook | 2018/03/12 10:44:06 {
  2. 10:44:06 webhook | > "receiver": "default-receiver",
  3. 10:44:06 webhook | > "status": "firing",
  4. 10:44:06 webhook | > "alerts": [
  5. 10:44:06 webhook | > {
  6. 10:44:06 webhook | > "status": "firing",
  7. 10:44:06 webhook | > "labels": {
  8. 10:44:06 webhook | > "alertname": "DiskRunningFull",

多实例Prometheus与Alertmanager集群

由于Gossip机制的实现,在Promthues和Alertmanager实例之间不要使用任何的负载均衡,需要确保Promthues将告警发送到所有的Alertmanager实例中:

  1. alerting:
  2. alertmanagers:
  3. - static_configs:
  4. - targets:
  5. - 127.0.0.1:9093
  6. - 127.0.0.1:9094
  7. - 127.0.0.1:9095

创建Promthues集群配置文件/etc/prometheus/prometheus-ha.yml,完整内容如下:

  1. global:
  2. scrape_interval: 15s
  3. scrape_timeout: 10s
  4. evaluation_interval: 15s
  5. rule_files:
  6. - /etc/prometheus/rules/*.rules
  7. alerting:
  8. alertmanagers:
  9. - static_configs:
  10. - targets:
  11. - 127.0.0.1:9093
  12. - 127.0.0.1:9094
  13. - 127.0.0.1:9095
  14. scrape_configs:
  15. - job_name: prometheus
  16. static_configs:
  17. - targets:
  18. - localhost:9090
  19. - job_name: 'node'
  20. static_configs:
  21. - targets: ['localhost:9100']

同时定义告警规则文件/etc/prometheus/rules/hoststats-alert.rules,如下所示:

  1. groups:
  2. - name: hostStatsAlert
  3. rules:
  4. - alert: hostCpuUsageAlert
  5. expr: sum(avg without (cpu)(irate(node_cpu{mode!='idle'}[5m]))) by (instance) * 100 > 50
  6. for: 1m
  7. labels:
  8. severity: page
  9. annotations:
  10. summary: "Instance {{ $labels.instance }} CPU usgae high"
  11. description: "{{ $labels.instance }} CPU usage above 50% (current value: {{ $value }})"
  12. - alert: hostMemUsageAlert
  13. expr: (node_memory_MemTotal - node_memory_MemAvailable)/node_memory_MemTotal * 100 > 85
  14. for: 1m
  15. labels:
  16. severity: page
  17. annotations:
  18. summary: "Instance {{ $labels.instance }} MEM usgae high"
  19. description: "{{ $labels.instance }} MEM usage above 85% (current value: {{ $value }})"

本示例部署结构如下所示:

Promthues与Alertmanager HA部署结构

创建prometheus.procfile文件,创建两个Promthues节点,分别监听9090和9091端口:

  1. p1: prometheus --config.file=/etc/prometheus/prometheus-ha.yml --storage.tsdb.path=/data/prometheus/ --web.listen-address="127.0.0.1:9090"
  2. p2: prometheus --config.file=/etc/prometheus/prometheus-ha.yml --storage.tsdb.path=/data/prometheus2/ --web.listen-address="127.0.0.1:9091"
  3. node_exporter: node_exporter -web.listen-address="0.0.0.0:9100"

使用goreman启动多节点Promthues:

  1. goreman -f prometheus.procfile -p 8556 start

Promthues启动完成后,手动拉高系统CPU使用率:

  1. cat /dev/zero>/dev/null

注意,对于多核主机,如果CPU达不到预期,运行多个命令。

当CPU利用率达到告警规则触发条件,两个Prometheus实例告警分别被触发。查看Alertmanager输出日志:

  1. 11:14:41 a3 | level=debug ts=2018-03-12T03:14:41.945493505Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]
  2. 11:14:41 a1 | level=debug ts=2018-03-12T03:14:41.945534548Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]
  3. 11:14:41 a2 | level=debug ts=2018-03-12T03:14:41.945687812Z caller=dispatch.go:188 component=dispatcher msg="Received alert" alert=hostCpuUsageAlert[7d698ac][active]

3个Alertmanager实例分别接收到来自不同Prometheus实例的告警信息。而Webhook服务只接收到来自Alertmanager集群的一条告警通知:

  1. 11:15:11 webhook | 2018/03/12 11:15:11 {
  2. 11:15:11 webhook | > "receiver": "default-receiver",
  3. 11:15:11 webhook | > "status": "firing",
  4. 11:15:11 webhook | > "alerts": [
  5. 11:15:11 webhook | > {
  6. 11:15:11 webhook | > "status": "firing",
  7. 11:15:11 webhook | > "labels": {
  8. 11:15:11 webhook | > "alertname": "hostCpuUsageAlert",