9.3. 數學函式及運算子
本節提供了 PostgreSQL 的數學運算方式。對於沒有標準數學約定的型別(例如,日期/時間型別),我們將在後續部分中介紹具體的行為。
Table 9.4 列出了可用的數學運算子。
Table 9.4. Mathematical Operators
Operator | Description | Example | Result | ||||
---|---|---|---|---|---|---|---|
+ |
addition | 2 + 3 |
5 |
||||
- |
subtraction | 2 - 3 |
-1 |
||||
* |
multiplication | 2 * 3 |
6 |
||||
/ |
division (integer division truncates the result) | 4 / 2 |
2 |
||||
% |
modulo (remainder) | 5 % 4 |
1 |
||||
^ |
exponentiation (associates left to right) | 2.0 ^ 3.0 |
8 |
||||
` | /` | square root | ` | / 25.0` | 5 |
||
` | /` | cube root | ` | / 27.0` | 3 |
||
! |
factorial | 5 ! |
120 |
||||
!! |
factorial (prefix operator) | !! 5 |
120 |
||||
@ |
absolute value | @ -5.0 |
5 |
||||
& |
bitwise AND | 91 & 15 |
11 |
||||
` | ` | bitwise OR | `32 | 3` | 35 |
||
# |
bitwise XOR | 17 # 5 |
20 |
||||
~ |
bitwise NOT | ~1 |
-2 |
||||
<< |
bitwise shift left | 1 << 4 |
16 |
||||
>> |
bitwise shift right | 8 >> 2 |
2 |
位元運算子僅適用於整數資料型別,也可用於位元字串型別的位元和位元變化,如 Table 9.14 所示。
Table 9.5 列出了可用的數學函數。在該表中,dp 表示雙精確度。這些函數中的許多函數都提供了多種形式,且具有不同的參數型別。除非另有說明,否則函數的任何形式都將回傳與其參數相同的資料型別。使用雙精確度資料的功能主要以主機系統的 C 函式庫實作; 因此,邊界情況下的準確性和行為可能會因主機系統而有所差異。
Table 9.5. Mathematical Functions
Function | Return Type | Description | Example | Result |
---|---|---|---|---|
abs( x ) |
(same as input) | absolute value | abs(-17.4) |
17.4 |
cbrt(dp ) |
dp |
cube root | cbrt(27.0) |
3 |
ceil(dp or numeric ) |
(same as input) | nearest integer greater than or equal to argument | ceil(-42.8) |
-42 |
ceiling(dp or numeric ) |
(same as input) | nearest integer greater than or equal to argument (same as ceil ) |
ceiling(-95.3) |
-95 |
degrees(dp ) |
dp |
radians to degrees | degrees(0.5) |
28.6478897565412 |
div( y numeric , x numeric ) |
numeric |
integer quotient of y /x |
div(9,4) |
2 |
exp(dp or numeric ) |
(same as input) | exponential | exp(1.0) |
2.71828182845905 |
floor(dp or numeric ) |
(same as input) | nearest integer less than or equal to argument | floor(-42.8) |
-43 |
ln(dp or numeric ) |
(same as input) | natural logarithm | ln(2.0) |
0.693147180559945 |
log(dp or numeric ) |
(same as input) | base 10 logarithm | log(100.0) |
2 |
log10(dp or numeric ) |
(same as input) | base 10 logarithm | log10(100.0) |
2 |
log( b numeric , x numeric ) |
numeric |
logarithm to base b |
log(2.0, 64.0) |
6.0000000000 |
mod( y , x ) |
(same as argument types) | remainder of y /x |
mod(9,4) |
1 |
pi() |
dp |
“π” constant | pi() |
3.14159265358979 |
power( a dp , b dp ) |
dp |
a raised to the power of b |
power(9.0, 3.0) |
729 |
power( a numeric , b numeric ) |
numeric |
a raised to the power of b |
power(9.0, 3.0) |
729 |
radians(dp ) |
dp |
degrees to radians | radians(45.0) |
0.785398163397448 |
round(dp or numeric ) |
(same as input) | round to nearest integer | round(42.4) |
42 |
round( v numeric , s int ) |
numeric |
round to s decimal places |
round(42.4382, 2) |
42.44 |
scale(numeric ) |
integer |
scale of the argument (the number of decimal digits in the fractional part) | scale(8.41) |
2 |
sign(dp or numeric ) |
(same as input) | sign of the argument (-1, 0, +1) | sign(-8.4) |
-1 |
sqrt(dp or numeric ) |
(same as input) | square root | sqrt(2.0) |
1.4142135623731 |
trunc(dp or numeric ) |
(same as input) | truncate toward zero | trunc(42.8) |
42 |
trunc( v numeric , s int ) |
numeric |
truncate to s decimal places |
trunc(42.4382, 2) |
42.43 |
width_bucket( operand dp , b1 dp , b2 dp , count int ) |
int |
return the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2 ; returns 0 or count +1 for an input outside the range |
width_bucket(5.35, 0.024, 10.06, 5) |
3 |
width_bucket( operand numeric , b1 numeric , b2 numeric , count int ) |
int |
return the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2 ; returns 0 or count +1 for an input outside the range |
width_bucket(5.35, 0.024, 10.06, 5) |
3 |
width_bucket( operand anyelement , thresholds anyarray ) |
int |
return the bucket number to which operand would be assigned given an array listing the lower bounds of the buckets; returns 0 for an input less than the first lower bound; the thresholds array must be sorted, smallest first, or unexpected results will be obtained |
width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[]) |
2 |
Table 9.6 shows functions for generating random numbers.
Table 9.6. Random Functions
Function | Return Type | Description |
---|---|---|
random() |
dp |
random value in the range 0.0 <= x < 1.0 |
setseed(dp ) |
void |
set seed for subsequent random() calls (value between -1.0 and 1.0, inclusive) |
The random()
function uses a simple linear congruential algorithm. It is fast but not suitable for cryptographic applications; see the pgcrypto module for a more secure alternative. If setseed()
is called, the results of subsequent random()
calls in the current session are repeatable by re-issuing setseed()
with the same argument.
Table 9.7 shows the available trigonometric functions. All these functions take arguments and return values of type double precision
. Each of the trigonometric functions comes in two variants, one that measures angles in radians and one that measures angles in degrees.
Table 9.7. Trigonometric Functions
Function (radians) | Function (degrees) | Description |
---|---|---|
acos( x ) |
acosd( x ) |
inverse cosine |
asin( x ) |
asind( x ) |
inverse sine |
atan( x ) |
atand( x ) |
inverse tangent |
atan2( y , x ) |
atan2d( y , x ) |
inverse tangent of y /x |
cos( x ) |
cosd( x ) |
cosine |
cot( x ) |
cotd( x ) |
cotangent |
sin( x ) |
sind( x ) |
sine |
tan( x ) |
tand( x ) |
tangent |
Note
Another way to work with angles measured in degrees is to use the unit transformation functions radians()
and degrees()
shown earlier. However, using the degree-based trigonometric functions is preferred, as that way avoids round-off error for special cases such as sind(30)
.
Table 9.8 shows the available hyperbolic functions. All these functions take arguments and return values of type double precision
.
Table 9.8. Hyperbolic Functions
Function | Description | Example | Result |
---|---|---|---|
sinh( x ) |
hyperbolic sine | sinh(0) |
0 |
cosh( x ) |
hyperbolic cosine | cosh(0) |
1 |
tanh( x ) |
hyperbolic tangent | tanh(0) |
0 |
asinh( x ) |
inverse hyperbolic sine | asinh(0) |
0 |
acosh( x ) |
inverse hyperbolic cosine | acosh(1) |
0 |
atanh( x ) |
inverse hyperbolic tangent | atanh(0) |
0 |