学习Pandas,第 7 课

英文原文: 07 - Lesson

离群值 (Outlier)

  1. import pandas as pd
  2. import sys
  1. print('Python version ' + sys.version)
  2. print('Pandas version ' + pd.__version__)
  1. Python version 3.6.1 | packaged by conda-forge | (default, Mar 23 2017, 21:57:00)
  2. [GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]
  3. Pandas version 0.19.2
  1. # 创建一个 dataframe,用日期作为索引
  2. States = ['NY', 'NY', 'NY', 'NY', 'FL', 'FL', 'GA', 'GA', 'FL', 'FL']
  3. data = [1.0, 2, 3, 4, 5, 6, 7, 8, 9, 10]
  4. idx = pd.date_range('1/1/2012', periods=10, freq='MS')
  5. df1 = pd.DataFrame(data, index=idx, columns=['Revenue'])
  6. df1['State'] = States
  7. # 创建第二个 dataframe
  8. data2 = [10.0, 10.0, 9, 9, 8, 8, 7, 7, 6, 6]
  9. idx2 = pd.date_range('1/1/2013', periods=10, freq='MS')
  10. df2 = pd.DataFrame(data2, index=idx2, columns=['Revenue'])
  11. df2['State'] = States
  1. # 把两个 dataframe 合并起来
  2. df = pd.concat([df1,df2])
  3. df















































































































Revenue State
2012-01-01 1.0 NY
2012-02-01 2.0 NY
2012-03-01 3.0 NY
2012-04-01 4.0 NY
2012-05-01 5.0 FL
2012-06-01 6.0 FL
2012-07-01 7.0 GA
2012-08-01 8.0 GA
2012-09-01 9.0 FL
2012-10-01 10.0 FL
2013-01-01 10.0 NY
2013-02-01 10.0 NY
2013-03-01 9.0 NY
2013-04-01 9.0 NY
2013-05-01 8.0 FL
2013-06-01 8.0 FL
2013-07-01 7.0 GA
2013-08-01 7.0 GA
2013-09-01 6.0 FL
2013-10-01 6.0 FL

计算离群值的方法

注意: 均值(average)和标准差(Standard Deviation)只对高斯分布(gaussian distribution)有意义。

  1. # 方法 1
  2. # 原始的 df 拷贝一份
  3. newdf = df.copy()
  4. newdf['x-Mean'] = abs(newdf['Revenue'] - newdf['Revenue'].mean())
  5. newdf['1.96*std'] = 1.96*newdf['Revenue'].std()
  6. newdf['Outlier'] = abs(newdf['Revenue'] - newdf['Revenue'].mean()) > 1.96*newdf['Revenue'].std()
  7. newdf














































































































































































Revenue State x-Mean 1.96*std Outlier
2012-01-01 1.0 NY 5.75 5.200273 True
2012-02-01 2.0 NY 4.75 5.200273 False
2012-03-01 3.0 NY 3.75 5.200273 False
2012-04-01 4.0 NY 2.75 5.200273 False
2012-05-01 5.0 FL 1.75 5.200273 False
2012-06-01 6.0 FL 0.75 5.200273 False
2012-07-01 7.0 GA 0.25 5.200273 False
2012-08-01 8.0 GA 1.25 5.200273 False
2012-09-01 9.0 FL 2.25 5.200273 False
2012-10-01 10.0 FL 3.25 5.200273 False
2013-01-01 10.0 NY 3.25 5.200273 False
2013-02-01 10.0 NY 3.25 5.200273 False
2013-03-01 9.0 NY 2.25 5.200273 False
2013-04-01 9.0 NY 2.25 5.200273 False
2013-05-01 8.0 FL 1.25 5.200273 False
2013-06-01 8.0 FL 1.25 5.200273 False
2013-07-01 7.0 GA 0.25 5.200273 False
2013-08-01 7.0 GA 0.25 5.200273 False
2013-09-01 6.0 FL 0.75 5.200273 False
2013-10-01 6.0 FL 0.75 5.200273 False

  1. # 方法 2
  2. # 分组的方法
  3. # 原始的 df 拷贝一份
  4. newdf = df.copy()
  5. State = newdf.groupby('State')
  6. newdf['Outlier'] = State.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
  7. newdf['x-Mean'] = State.transform( lambda x: abs(x-x.mean()) )
  8. newdf['1.96*std'] = State.transform( lambda x: 1.96*x.std() )
  9. newdf














































































































































































Revenue State Outlier x-Mean 1.96*std
2012-01-01 1.0 NY False 5.00 7.554813
2012-02-01 2.0 NY False 4.00 7.554813
2012-03-01 3.0 NY False 3.00 7.554813
2012-04-01 4.0 NY False 2.00 7.554813
2012-05-01 5.0 FL False 2.25 3.434996
2012-06-01 6.0 FL False 1.25 3.434996
2012-07-01 7.0 GA False 0.25 0.980000
2012-08-01 8.0 GA False 0.75 0.980000
2012-09-01 9.0 FL False 1.75 3.434996
2012-10-01 10.0 FL False 2.75 3.434996
2013-01-01 10.0 NY False 4.00 7.554813
2013-02-01 10.0 NY False 4.00 7.554813
2013-03-01 9.0 NY False 3.00 7.554813
2013-04-01 9.0 NY False 3.00 7.554813
2013-05-01 8.0 FL False 0.75 3.434996
2013-06-01 8.0 FL False 0.75 3.434996
2013-07-01 7.0 GA False 0.25 0.980000
2013-08-01 7.0 GA False 0.25 0.980000
2013-09-01 6.0 FL False 1.25 3.434996
2013-10-01 6.0 FL False 1.25 3.434996

  1. # 方法 2
  2. # 多个条件分组
  3. # 原始 df 拷贝一份
  4. newdf = df.copy()
  5. StateMonth = newdf.groupby(['State', lambda x: x.month])
  6. newdf['Outlier'] = StateMonth.transform( lambda x: abs(x-x.mean()) > 1.96*x.std() )
  7. newdf['x-Mean'] = StateMonth.transform( lambda x: abs(x-x.mean()) )
  8. newdf['1.96*std'] = StateMonth.transform( lambda x: 1.96*x.std() )
  9. newdf














































































































































































Revenue State Outlier x-Mean 1.96*std
2012-01-01 1.0 NY False 4.5 12.473364
2012-02-01 2.0 NY False 4.0 11.087434
2012-03-01 3.0 NY False 3.0 8.315576
2012-04-01 4.0 NY False 2.5 6.929646
2012-05-01 5.0 FL False 1.5 4.157788
2012-06-01 6.0 FL False 1.0 2.771859
2012-07-01 7.0 GA False 0.0 0.000000
2012-08-01 8.0 GA False 0.5 1.385929
2012-09-01 9.0 FL False 1.5 4.157788
2012-10-01 10.0 FL False 2.0 5.543717
2013-01-01 10.0 NY False 4.5 12.473364
2013-02-01 10.0 NY False 4.0 11.087434
2013-03-01 9.0 NY False 3.0 8.315576
2013-04-01 9.0 NY False 2.5 6.929646
2013-05-01 8.0 FL False 1.5 4.157788
2013-06-01 8.0 FL False 1.0 2.771859
2013-07-01 7.0 GA False 0.0 0.000000
2013-08-01 7.0 GA False 0.5 1.385929
2013-09-01 6.0 FL False 1.5 4.157788
2013-10-01 6.0 FL False 2.0 5.543717

  1. # 方法 3
  2. # 分组的方法
  3. # 原始 df 拷贝一份
  4. newdf = df.copy()
  5. State = newdf.groupby('State')
  6. def s(group):
  7. group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
  8. group['1.96*std'] = 1.96*group['Revenue'].std()
  9. group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
  10. return group
  11. Newdf2 = State.apply(s)
  12. Newdf2














































































































































































Revenue State x-Mean 1.96*std Outlier
2012-01-01 1.0 NY 5.00 7.554813 False
2012-02-01 2.0 NY 4.00 7.554813 False
2012-03-01 3.0 NY 3.00 7.554813 False
2012-04-01 4.0 NY 2.00 7.554813 False
2012-05-01 5.0 FL 2.25 3.434996 False
2012-06-01 6.0 FL 1.25 3.434996 False
2012-07-01 7.0 GA 0.25 0.980000 False
2012-08-01 8.0 GA 0.75 0.980000 False
2012-09-01 9.0 FL 1.75 3.434996 False
2012-10-01 10.0 FL 2.75 3.434996 False
2013-01-01 10.0 NY 4.00 7.554813 False
2013-02-01 10.0 NY 4.00 7.554813 False
2013-03-01 9.0 NY 3.00 7.554813 False
2013-04-01 9.0 NY 3.00 7.554813 False
2013-05-01 8.0 FL 0.75 3.434996 False
2013-06-01 8.0 FL 0.75 3.434996 False
2013-07-01 7.0 GA 0.25 0.980000 False
2013-08-01 7.0 GA 0.25 0.980000 False
2013-09-01 6.0 FL 1.25 3.434996 False
2013-10-01 6.0 FL 1.25 3.434996 False

  1. # 方法 3
  2. # 多个条件分组
  3. # 原始 df 拷贝一份
  4. newdf = df.copy()
  5. StateMonth = newdf.groupby(['State', lambda x: x.month])
  6. def s(group):
  7. group['x-Mean'] = abs(group['Revenue'] - group['Revenue'].mean())
  8. group['1.96*std'] = 1.96*group['Revenue'].std()
  9. group['Outlier'] = abs(group['Revenue'] - group['Revenue'].mean()) > 1.96*group['Revenue'].std()
  10. return group
  11. Newdf2 = StateMonth.apply(s)
  12. Newdf2














































































































































































Revenue State x-Mean 1.96*std Outlier
2012-01-01 1.0 NY 4.5 12.473364 False
2012-02-01 2.0 NY 4.0 11.087434 False
2012-03-01 3.0 NY 3.0 8.315576 False
2012-04-01 4.0 NY 2.5 6.929646 False
2012-05-01 5.0 FL 1.5 4.157788 False
2012-06-01 6.0 FL 1.0 2.771859 False
2012-07-01 7.0 GA 0.0 0.000000 False
2012-08-01 8.0 GA 0.5 1.385929 False
2012-09-01 9.0 FL 1.5 4.157788 False
2012-10-01 10.0 FL 2.0 5.543717 False
2013-01-01 10.0 NY 4.5 12.473364 False
2013-02-01 10.0 NY 4.0 11.087434 False
2013-03-01 9.0 NY 3.0 8.315576 False
2013-04-01 9.0 NY 2.5 6.929646 False
2013-05-01 8.0 FL 1.5 4.157788 False
2013-06-01 8.0 FL 1.0 2.771859 False
2013-07-01 7.0 GA 0.0 0.000000 False
2013-08-01 7.0 GA 0.5 1.385929 False
2013-09-01 6.0 FL 1.5 4.157788 False
2013-10-01 6.0 FL 2.0 5.543717 False

假设是一个非高斯分布 (如果你绘制出图形,看上去不像是一个正态分布)

  1. # 原始的 df 拷贝一份
  2. newdf = df.copy()
  3. State = newdf.groupby('State')
  4. newdf['Lower'] = State['Revenue'].transform( lambda x: x.quantile(q=.25) - (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
  5. newdf['Upper'] = State['Revenue'].transform( lambda x: x.quantile(q=.75) + (1.5*(x.quantile(q=.75)-x.quantile(q=.25))) )
  6. newdf['Outlier'] = (newdf['Revenue'] < newdf['Lower']) | (newdf['Revenue'] > newdf['Upper'])
  7. newdf














































































































































































Revenue State Lower Upper Outlier
2012-01-01 1.0 NY -7.000 19.000 False
2012-02-01 2.0 NY -7.000 19.000 False
2012-03-01 3.0 NY -7.000 19.000 False
2012-04-01 4.0 NY -7.000 19.000 False
2012-05-01 5.0 FL 2.625 11.625 False
2012-06-01 6.0 FL 2.625 11.625 False
2012-07-01 7.0 GA 6.625 7.625 False
2012-08-01 8.0 GA 6.625 7.625 True
2012-09-01 9.0 FL 2.625 11.625 False
2012-10-01 10.0 FL 2.625 11.625 False
2013-01-01 10.0 NY -7.000 19.000 False
2013-02-01 10.0 NY -7.000 19.000 False
2013-03-01 9.0 NY -7.000 19.000 False
2013-04-01 9.0 NY -7.000 19.000 False
2013-05-01 8.0 FL 2.625 11.625 False
2013-06-01 8.0 FL 2.625 11.625 False
2013-07-01 7.0 GA 6.625 7.625 False
2013-08-01 7.0 GA 6.625 7.625 False
2013-09-01 6.0 FL 2.625 11.625 False
2013-10-01 6.0 FL 2.625 11.625 False

This tutorial was created by HEDARO


本教程由派兰数据翻译

These tutorials are also available through an email course, please visit http://www.hedaro.com/pandas-tutorial to sign up today.