学习Pandas,第 6 课
英文原文: 06 - Lesson
我们看一下 groupby 这个函数。
# 导入库
import pandas as pd
import sys
print('Python version ' + sys.version)
print('Pandas version ' + pd.__version__)
Python version 3.6.1 | packaged by conda-forge | (default, Mar 23 2017, 21:57:00)
[GCC 4.2.1 Compatible Apple LLVM 6.1.0 (clang-602.0.53)]
Pandas version 0.19.2
# 我们的小数聚集
d = {'one':[1,1,1,1,1],
'two':[2,2,2,2,2],
'letter':['a','a','b','b','c']}
# 创建一个 dataframe
df = pd.DataFrame(d)
df
letter | one | two | |
---|---|---|---|
0 | a | 1 | 2 |
1 | a | 1 | 2 |
2 | b | 1 | 2 |
3 | b | 1 | 2 |
4 | c | 1 | 2 |
# 创建一个 groupby 对象
one = df.groupby('letter')
# 在分组上应用 sum() 函数
one.sum()
one | two | |
---|---|---|
letter | ||
a | 2 | 4 |
b | 2 | 4 |
c | 1 | 2 |
letterone = df.groupby(['letter','one']).sum()
letterone
two | ||
---|---|---|
letter | one | |
a | 1 | 4 |
b | 1 | 4 |
c | 1 | 2 |
letterone.index
MultiIndex(levels=[['a', 'b', 'c'], [1]],
labels=[[0, 1, 2], [0, 0, 0]],
names=['letter', 'one'])
你可能不想把用来分组的列名字作为索引,像下面的做法很容易实现。
letterone = df.groupby(['letter','one'], as_index=False).sum()
letterone
letter | one | two | |
---|---|---|---|
0 | a | 1 | 4 |
1 | b | 1 | 4 |
2 | c | 1 | 2 |
letterone.index
Int64Index([0, 1, 2], dtype='int64')
This tutorial was created by HEDARO
本教程由派兰数据翻译
These tutorials are also available through an email course, please visit http://www.hedaro.com/pandas-tutorial to sign up today.