Working with text data
Series and Index are equipped with a set of string processing methodsthat make it easy to operate on each element of the array. Perhaps mostimportantly, these methods exclude missing/NA values automatically. These areaccessed via the str
attribute and generally have names matchingthe equivalent (scalar) built-in string methods:
- In [1]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
- In [2]: s.str.lower()
- Out[2]:
- 0 a
- 1 b
- 2 c
- 3 aaba
- 4 baca
- 5 NaN
- 6 caba
- 7 dog
- 8 cat
- dtype: object
- In [3]: s.str.upper()
- Out[3]:
- 0 A
- 1 B
- 2 C
- 3 AABA
- 4 BACA
- 5 NaN
- 6 CABA
- 7 DOG
- 8 CAT
- dtype: object
- In [4]: s.str.len()
- Out[4]:
- 0 1.0
- 1 1.0
- 2 1.0
- 3 4.0
- 4 4.0
- 5 NaN
- 6 4.0
- 7 3.0
- 8 3.0
- dtype: float64
- In [5]: idx = pd.Index([' jack', 'jill ', ' jesse ', 'frank'])
- In [6]: idx.str.strip()
- Out[6]: Index(['jack', 'jill', 'jesse', 'frank'], dtype='object')
- In [7]: idx.str.lstrip()
- Out[7]: Index(['jack', 'jill ', 'jesse ', 'frank'], dtype='object')
- In [8]: idx.str.rstrip()
- Out[8]: Index([' jack', 'jill', ' jesse', 'frank'], dtype='object')
The string methods on Index are especially useful for cleaning up ortransforming DataFrame columns. For instance, you may have columns withleading or trailing whitespace:
- In [9]: df = pd.DataFrame(np.random.randn(3, 2),
- ...: columns=[' Column A ', ' Column B '], index=range(3))
- ...:
- In [10]: df
- Out[10]:
- Column A Column B
- 0 0.469112 -0.282863
- 1 -1.509059 -1.135632
- 2 1.212112 -0.173215
Since df.columns
is an Index object, we can use the .str
accessor
- In [11]: df.columns.str.strip()
- Out[11]: Index(['Column A', 'Column B'], dtype='object')
- In [12]: df.columns.str.lower()
- Out[12]: Index([' column a ', ' column b '], dtype='object')
These string methods can then be used to clean up the columns as needed.Here we are removing leading and trailing whitespaces, lower casing all names,and replacing any remaining whitespaces with underscores:
- In [13]: df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_')
- In [14]: df
- Out[14]:
- column_a column_b
- 0 0.469112 -0.282863
- 1 -1.509059 -1.135632
- 2 1.212112 -0.173215
Note
If you have a Series
where lots of elements are repeated(i.e. the number of unique elements in the Series
is a lot smaller than the length of theSeries
), it can be faster to convert the original Series
to one of typecategory
and then use .str.<method>
or .dt.<property>
on that.The performance difference comes from the fact that, for Series
of type category
, thestring operations are done on the .categories
and not on each element of theSeries
.
Please note that a Series
of type category
with string .categories
hassome limitations in comparison to Series
of type string (e.g. you can’t add strings toeach other: s + " " + s
won’t work if s
is a Series
of type category
). Also,.str
methods which operate on elements of type list
are not available on such aSeries
.
Warning
Before v.0.25.0, the .str
-accessor did only the most rudimentary type checks. Starting withv.0.25.0, the type of the Series is inferred and the allowed types (i.e. strings) are enforced more rigorously.
Generally speaking, the .str
accessor is intended to work only on strings. With very fewexceptions, other uses are not supported, and may be disabled at a later point.
Splitting and replacing strings
Methods like split
return a Series of lists:
- In [15]: s2 = pd.Series(['a_b_c', 'c_d_e', np.nan, 'f_g_h'])
- In [16]: s2.str.split('_')
- Out[16]:
- 0 [a, b, c]
- 1 [c, d, e]
- 2 NaN
- 3 [f, g, h]
- dtype: object
Elements in the split lists can be accessed using get
or []
notation:
- In [17]: s2.str.split('_').str.get(1)
- Out[17]:
- 0 b
- 1 d
- 2 NaN
- 3 g
- dtype: object
- In [18]: s2.str.split('_').str[1]
- Out[18]:
- 0 b
- 1 d
- 2 NaN
- 3 g
- dtype: object
It is easy to expand this to return a DataFrame using expand
.
- In [19]: s2.str.split('_', expand=True)
- Out[19]:
- 0 1 2
- 0 a b c
- 1 c d e
- 2 NaN NaN NaN
- 3 f g h
It is also possible to limit the number of splits:
- In [20]: s2.str.split('_', expand=True, n=1)
- Out[20]:
- 0 1
- 0 a b_c
- 1 c d_e
- 2 NaN NaN
- 3 f g_h
rsplit
is similar to split
except it works in the reverse direction,i.e., from the end of the string to the beginning of the string:
- In [21]: s2.str.rsplit('_', expand=True, n=1)
- Out[21]:
- 0 1
- 0 a_b c
- 1 c_d e
- 2 NaN NaN
- 3 f_g h
replace
by default replaces regular expressions:
- In [22]: s3 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca',
- ....: '', np.nan, 'CABA', 'dog', 'cat'])
- ....:
- In [23]: s3
- Out[23]:
- 0 A
- 1 B
- 2 C
- 3 Aaba
- 4 Baca
- 5
- 6 NaN
- 7 CABA
- 8 dog
- 9 cat
- dtype: object
- In [24]: s3.str.replace('^.a|dog', 'XX-XX ', case=False)
- Out[24]:
- 0 A
- 1 B
- 2 C
- 3 XX-XX ba
- 4 XX-XX ca
- 5
- 6 NaN
- 7 XX-XX BA
- 8 XX-XX
- 9 XX-XX t
- dtype: object
Some caution must be taken to keep regular expressions in mind! For example, thefollowing code will cause trouble because of the regular expression meaning of$:
- # Consider the following badly formatted financial data
- In [25]: dollars = pd.Series(['12', '-$10', '$10,000'])
- # This does what you'd naively expect:
- In [26]: dollars.str.replace('$', '')
- Out[26]:
- 0 12
- 1 -10
- 2 10,000
- dtype: object
- # But this doesn't:
- In [27]: dollars.str.replace('-$', '-')
- Out[27]:
- 0 12
- 1 -$10
- 2 $10,000
- dtype: object
- # We need to escape the special character (for >1 len patterns)
- In [28]: dollars.str.replace(r'-\$', '-')
- Out[28]:
- 0 12
- 1 -10
- 2 $10,000
- dtype: object
New in version 0.23.0.
If you do want literal replacement of a string (equivalent tostr.replace()
), you can set the optional regex
parameter toFalse
, rather than escaping each character. In this case both pat
and repl
must be strings:
- # These lines are equivalent
- In [29]: dollars.str.replace(r'-\$', '-')
- Out[29]:
- 0 12
- 1 -10
- 2 $10,000
- dtype: object
- In [30]: dollars.str.replace('-$', '-', regex=False)
- Out[30]:
- 0 12
- 1 -10
- 2 $10,000
- dtype: object
New in version 0.20.0.
The replace
method can also take a callable as replacement. It is calledon every pat
using re.sub()
. The callable should expect onepositional argument (a regex object) and return a string.
- # Reverse every lowercase alphabetic word
- In [31]: pat = r'[a-z]+'
- In [32]: def repl(m):
- ....: return m.group(0)[::-1]
- ....:
- In [33]: pd.Series(['foo 123', 'bar baz', np.nan]).str.replace(pat, repl)
- Out[33]:
- 0 oof 123
- 1 rab zab
- 2 NaN
- dtype: object
- # Using regex groups
- In [34]: pat = r"(?P<one>\w+) (?P<two>\w+) (?P<three>\w+)"
- In [35]: def repl(m):
- ....: return m.group('two').swapcase()
- ....:
- In [36]: pd.Series(['Foo Bar Baz', np.nan]).str.replace(pat, repl)
- Out[36]:
- 0 bAR
- 1 NaN
- dtype: object
New in version 0.20.0.
The replace
method also accepts a compiled regular expression objectfrom re.compile()
as a pattern. All flags should be included in thecompiled regular expression object.
- In [37]: import re
- In [38]: regex_pat = re.compile(r'^.a|dog', flags=re.IGNORECASE)
- In [39]: s3.str.replace(regex_pat, 'XX-XX ')
- Out[39]:
- 0 A
- 1 B
- 2 C
- 3 XX-XX ba
- 4 XX-XX ca
- 5
- 6 NaN
- 7 XX-XX BA
- 8 XX-XX
- 9 XX-XX t
- dtype: object
Including a flags
argument when calling replace
with a compiledregular expression object will raise a ValueError
.
- In [40]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
- In [40]: s3.str.replace(regex_pat, 'XX-XX ', flags=re.IGNORECASE)
ValueError: case and flags cannot be set when pat is a compiled regex
Concatenation
There are several ways to concatenate a Series
or Index
, either with itself or others, all based on cat()
,resp. Index.str.cat
.
Concatenating a single Series into a string
The content of a Series
(or Index
) can be concatenated:
- In [41]: s = pd.Series(['a', 'b', 'c', 'd'])
- In [42]: s.str.cat(sep=',')
- Out[42]: 'a,b,c,d'
If not specified, the keyword sep
for the separator defaults to the empty string, sep=''
:
- In [43]: s.str.cat()
- Out[43]: 'abcd'
By default, missing values are ignored. Using na_rep
, they can be given a representation:
- In [44]: t = pd.Series(['a', 'b', np.nan, 'd'])
- In [45]: t.str.cat(sep=',')
- Out[45]: 'a,b,d'
- In [46]: t.str.cat(sep=',', na_rep='-')
- Out[46]: 'a,b,-,d'
Concatenating a Series and something list-like into a Series
The first argument to cat()
can be a list-like object, provided that it matches the length of the calling Series
(or Index
).
- In [47]: s.str.cat(['A', 'B', 'C', 'D'])
- Out[47]:
- 0 aA
- 1 bB
- 2 cC
- 3 dD
- dtype: object
Missing values on either side will result in missing values in the result as well, unless na_rep
is specified:
- In [48]: s.str.cat(t)
- Out[48]:
- 0 aa
- 1 bb
- 2 NaN
- 3 dd
- dtype: object
- In [49]: s.str.cat(t, na_rep='-')
- Out[49]:
- 0 aa
- 1 bb
- 2 c-
- 3 dd
- dtype: object
Concatenating a Series and something array-like into a Series
New in version 0.23.0.
The parameter others
can also be two-dimensional. In this case, the number or rows must match the lengths of the calling Series
(or Index
).
- In [50]: d = pd.concat([t, s], axis=1)
- In [51]: s
- Out[51]:
- 0 a
- 1 b
- 2 c
- 3 d
- dtype: object
- In [52]: d
- Out[52]:
- 0 1
- 0 a a
- 1 b b
- 2 NaN c
- 3 d d
- In [53]: s.str.cat(d, na_rep='-')
- Out[53]:
- 0 aaa
- 1 bbb
- 2 c-c
- 3 ddd
- dtype: object
Concatenating a Series and an indexed object into a Series, with alignment
New in version 0.23.0.
For concatenation with a Series
or DataFrame
, it is possible to align the indexes before concatenation by settingthe join
-keyword.
- In [54]: u = pd.Series(['b', 'd', 'a', 'c'], index=[1, 3, 0, 2])
- In [55]: s
- Out[55]:
- 0 a
- 1 b
- 2 c
- 3 d
- dtype: object
- In [56]: u
- Out[56]:
- 1 b
- 3 d
- 0 a
- 2 c
- dtype: object
- In [57]: s.str.cat(u)
- Out[57]:
- 0 ab
- 1 bd
- 2 ca
- 3 dc
- dtype: object
- In [58]: s.str.cat(u, join='left')
- Out[58]:
- 0 aa
- 1 bb
- 2 cc
- 3 dd
- dtype: object
Warning
If the join
keyword is not passed, the method cat()
will currently fall back to the behavior before version 0.23.0 (i.e. no alignment),but a FutureWarning
will be raised if any of the involved indexes differ, since this default will change to join='left'
in a future version.
The usual options are available for join
(one of 'left', 'outer', 'inner', 'right'
).In particular, alignment also means that the different lengths do not need to coincide anymore.
- In [59]: v = pd.Series(['z', 'a', 'b', 'd', 'e'], index=[-1, 0, 1, 3, 4])
- In [60]: s
- Out[60]:
- 0 a
- 1 b
- 2 c
- 3 d
- dtype: object
- In [61]: v
- Out[61]:
- -1 z
- 0 a
- 1 b
- 3 d
- 4 e
- dtype: object
- In [62]: s.str.cat(v, join='left', na_rep='-')
- Out[62]:
- 0 aa
- 1 bb
- 2 c-
- 3 dd
- dtype: object
- In [63]: s.str.cat(v, join='outer', na_rep='-')
- Out[63]:
- -1 -z
- 0 aa
- 1 bb
- 2 c-
- 3 dd
- 4 -e
- dtype: object
The same alignment can be used when others
is a DataFrame
:
- In [64]: f = d.loc[[3, 2, 1, 0], :]
- In [65]: s
- Out[65]:
- 0 a
- 1 b
- 2 c
- 3 d
- dtype: object
- In [66]: f
- Out[66]:
- 0 1
- 3 d d
- 2 NaN c
- 1 b b
- 0 a a
- In [67]: s.str.cat(f, join='left', na_rep='-')
- Out[67]:
- 0 aaa
- 1 bbb
- 2 c-c
- 3 ddd
- dtype: object
Concatenating a Series and many objects into a Series
Several array-like items (specifically: Series
, Index
, and 1-dimensional variants of np.ndarray
)can be combined in a list-like container (including iterators, dict
-views, etc.).
- In [68]: s
- Out[68]:
- 0 a
- 1 b
- 2 c
- 3 d
- dtype: object
- In [69]: u
- Out[69]:
- 1 b
- 3 d
- 0 a
- 2 c
- dtype: object
- In [70]: s.str.cat([u, u.to_numpy()], join='left')
- Out[70]:
- 0 aab
- 1 bbd
- 2 cca
- 3 ddc
- dtype: object
All elements without an index (e.g. np.ndarray
) within the passed list-like must match in length to the calling Series
(or Index
),but Series
and Index
may have arbitrary length (as long as alignment is not disabled with join=None
):
- In [71]: v
- Out[71]:
- -1 z
- 0 a
- 1 b
- 3 d
- 4 e
- dtype: object
- In [72]: s.str.cat([v, u, u.to_numpy()], join='outer', na_rep='-')
- Out[72]:
- -1 -z--
- 0 aaab
- 1 bbbd
- 2 c-ca
- 3 dddc
- 4 -e--
- dtype: object
If using join='right'
on a list-like of others
that contains different indexes,the union of these indexes will be used as the basis for the final concatenation:
- In [73]: u.loc[[3]]
- Out[73]:
- 3 d
- dtype: object
- In [74]: v.loc[[-1, 0]]
- Out[74]:
- -1 z
- 0 a
- dtype: object
- In [75]: s.str.cat([u.loc[[3]], v.loc[[-1, 0]]], join='right', na_rep='-')
- Out[75]:
- -1 --z
- 0 a-a
- 3 dd-
- dtype: object
Indexing with .str
You can use []
notation to directly index by position locations. If you index past the endof the string, the result will be a NaN
.
- In [76]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan,
- ....: 'CABA', 'dog', 'cat'])
- ....:
- In [77]: s.str[0]
- Out[77]:
- 0 A
- 1 B
- 2 C
- 3 A
- 4 B
- 5 NaN
- 6 C
- 7 d
- 8 c
- dtype: object
- In [78]: s.str[1]
- Out[78]:
- 0 NaN
- 1 NaN
- 2 NaN
- 3 a
- 4 a
- 5 NaN
- 6 A
- 7 o
- 8 a
- dtype: object
Extracting substrings
Extract first match in each subject (extract)
Warning
In version 0.18.0, extract
gained the expand
argument. Whenexpand=False
it returns a Series
, Index
, orDataFrame
, depending on the subject and regular expressionpattern (same behavior as pre-0.18.0). When expand=True
italways returns a DataFrame
, which is more consistent and lessconfusing from the perspective of a user. expand=True
is thedefault since version 0.23.0.
The extract
method accepts a regular expression with at least onecapture group.
Extracting a regular expression with more than one group returns aDataFrame with one column per group.
- In [79]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'([ab])(\d)', expand=False)
- Out[79]:
- 0 1
- 0 a 1
- 1 b 2
- 2 NaN NaN
Elements that do not match return a row filled with NaN
. Thus, aSeries of messy strings can be “converted” into a like-indexed Seriesor DataFrame of cleaned-up or more useful strings, withoutnecessitating get()
to access tuples or re.match
objects. Thedtype of the result is always object, even if no match is found andthe result only contains NaN
.
Named groups like
- In [80]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'(?P<letter>[ab])(?P<digit>\d)',
- ....: expand=False)
- ....:
- Out[80]:
- letter digit
- 0 a 1
- 1 b 2
- 2 NaN NaN
and optional groups like
- In [81]: pd.Series(['a1', 'b2', '3']).str.extract(r'([ab])?(\d)', expand=False)
- Out[81]:
- 0 1
- 0 a 1
- 1 b 2
- 2 NaN 3
can also be used. Note that any capture group names in the regularexpression will be used for column names; otherwise capture groupnumbers will be used.
Extracting a regular expression with one group returns a DataFrame
with one column if expand=True
.
- In [82]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=True)
- Out[82]:
- 0
- 0 1
- 1 2
- 2 NaN
It returns a Series if expand=False
.
- In [83]: pd.Series(['a1', 'b2', 'c3']).str.extract(r'[ab](\d)', expand=False)
- Out[83]:
- 0 1
- 1 2
- 2 NaN
- dtype: object
Calling on an Index
with a regex with exactly one capture groupreturns a DataFrame
with one column if expand=True
.
- In [84]: s = pd.Series(["a1", "b2", "c3"], ["A11", "B22", "C33"])
- In [85]: s
- Out[85]:
- A11 a1
- B22 b2
- C33 c3
- dtype: object
- In [86]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=True)
- Out[86]:
- letter
- 0 A
- 1 B
- 2 C
It returns an Index
if expand=False
.
- In [87]: s.index.str.extract("(?P<letter>[a-zA-Z])", expand=False)
- Out[87]: Index(['A', 'B', 'C'], dtype='object', name='letter')
Calling on an Index
with a regex with more than one capture groupreturns a DataFrame
if expand=True
.
- In [88]: s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=True)
- Out[88]:
- letter 1
- 0 A 11
- 1 B 22
- 2 C 33
It raises ValueError
if expand=False
.
- >>> s.index.str.extract("(?P<letter>[a-zA-Z])([0-9]+)", expand=False)
- ValueError: only one regex group is supported with Index
The table below summarizes the behavior of extract(expand=False)
(input subject in first column, number of groups in regex infirst row)
1 group | >1 group | |
Index | Index | ValueError |
Series | Series | DataFrame |
Extract all matches in each subject (extractall)
New in version 0.18.0.
Unlike extract
(which returns only the first match),
- In [89]: s = pd.Series(["a1a2", "b1", "c1"], index=["A", "B", "C"])
- In [90]: s
- Out[90]:
- A a1a2
- B b1
- C c1
- dtype: object
- In [91]: two_groups = '(?P<letter>[a-z])(?P<digit>[0-9])'
- In [92]: s.str.extract(two_groups, expand=True)
- Out[92]:
- letter digit
- A a 1
- B b 1
- C c 1
the extractall
method returns every match. The result ofextractall
is always a DataFrame
with a MultiIndex
on itsrows. The last level of the MultiIndex
is named match
andindicates the order in the subject.
- In [93]: s.str.extractall(two_groups)
- Out[93]:
- letter digit
- match
- A 0 a 1
- 1 a 2
- B 0 b 1
- C 0 c 1
When each subject string in the Series has exactly one match,
- In [94]: s = pd.Series(['a3', 'b3', 'c2'])
- In [95]: s
- Out[95]:
- 0 a3
- 1 b3
- 2 c2
- dtype: object
then extractall(pat).xs(0, level='match')
gives the same result asextract(pat)
.
- In [96]: extract_result = s.str.extract(two_groups, expand=True)
- In [97]: extract_result
- Out[97]:
- letter digit
- 0 a 3
- 1 b 3
- 2 c 2
- In [98]: extractall_result = s.str.extractall(two_groups)
- In [99]: extractall_result
- Out[99]:
- letter digit
- match
- 0 0 a 3
- 1 0 b 3
- 2 0 c 2
- In [100]: extractall_result.xs(0, level="match")
- Out[100]:
- letter digit
- 0 a 3
- 1 b 3
- 2 c 2
Index
also supports .str.extractall
. It returns a DataFrame
which has thesame result as a Series.str.extractall
with a default index (starts from 0).
New in version 0.19.0.
- In [101]: pd.Index(["a1a2", "b1", "c1"]).str.extractall(two_groups)
- Out[101]:
- letter digit
- match
- 0 0 a 1
- 1 a 2
- 1 0 b 1
- 2 0 c 1
- In [102]: pd.Series(["a1a2", "b1", "c1"]).str.extractall(two_groups)
- Out[102]:
- letter digit
- match
- 0 0 a 1
- 1 a 2
- 1 0 b 1
- 2 0 c 1
Testing for Strings that match or contain a pattern
You can check whether elements contain a pattern:
- In [103]: pattern = r'[0-9][a-z]'
- In [104]: pd.Series(['1', '2', '3a', '3b', '03c']).str.contains(pattern)
- Out[104]:
- 0 False
- 1 False
- 2 True
- 3 True
- 4 True
- dtype: bool
Or whether elements match a pattern:
- In [105]: pd.Series(['1', '2', '3a', '3b', '03c']).str.match(pattern)
- Out[105]:
- 0 False
- 1 False
- 2 True
- 3 True
- 4 False
- dtype: bool
The distinction between match
and contains
is strictness: match
relies on strict re.match
, while contains
relies on re.search
.
Methods like match
, contains
, startswith
, and endswith
takean extra na
argument so missing values can be considered True or False:
- In [106]: s4 = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
- In [107]: s4.str.contains('A', na=False)
- Out[107]:
- 0 True
- 1 False
- 2 False
- 3 True
- 4 False
- 5 False
- 6 True
- 7 False
- 8 False
- dtype: bool
Creating indicator variables
You can extract dummy variables from string columns.For example if they are separated by a '|'
:
- In [108]: s = pd.Series(['a', 'a|b', np.nan, 'a|c'])
- In [109]: s.str.get_dummies(sep='|')
- Out[109]:
- a b c
- 0 1 0 0
- 1 1 1 0
- 2 0 0 0
- 3 1 0 1
String Index
also supports get_dummies
which returns a MultiIndex
.
New in version 0.18.1.
- In [110]: idx = pd.Index(['a', 'a|b', np.nan, 'a|c'])
- In [111]: idx.str.get_dummies(sep='|')
- Out[111]:
- MultiIndex([(1, 0, 0),
- (1, 1, 0),
- (0, 0, 0),
- (1, 0, 1)],
- names=['a', 'b', 'c'])
See also get_dummies()
.
Method summary
Method | Description |
---|---|
cat() | Concatenate strings |
split() | Split strings on delimiter |
rsplit() | Split strings on delimiter working from the end of the string |
get() | Index into each element (retrieve i-th element) |
join() | Join strings in each element of the Series with passed separator |
get_dummies() | Split strings on the delimiter returning DataFrame of dummy variables |
contains() | Return boolean array if each string contains pattern/regex |
replace() | Replace occurrences of pattern/regex/string with some other string or the return value of a callable given the occurrence |
repeat() | Duplicate values (s.str.repeat(3) equivalent to x * 3 ) |
pad() | Add whitespace to left, right, or both sides of strings |
center() | Equivalent to str.center |
ljust() | Equivalent to str.ljust |
rjust() | Equivalent to str.rjust |
zfill() | Equivalent to str.zfill |
wrap() | Split long strings into lines with length less than a given width |
slice() | Slice each string in the Series |
slice_replace() | Replace slice in each string with passed value |
count() | Count occurrences of pattern |
startswith() | Equivalent to str.startswith(pat) for each element |
endswith() | Equivalent to str.endswith(pat) for each element |
findall() | Compute list of all occurrences of pattern/regex for each string |
match() | Call re.match on each element, returning matched groups as list |
extract() | Call re.search on each element, returning DataFrame with one row for each element and one column for each regex capture group |
extractall() | Call re.findall on each element, returning DataFrame with one row for each match and one column for each regex capture group |
len() | Compute string lengths |
strip() | Equivalent to str.strip |
rstrip() | Equivalent to str.rstrip |
lstrip() | Equivalent to str.lstrip |
partition() | Equivalent to str.partition |
rpartition() | Equivalent to str.rpartition |
lower() | Equivalent to str.lower |
casefold() | Equivalent to str.casefold |
upper() | Equivalent to str.upper |
find() | Equivalent to str.find |
rfind() | Equivalent to str.rfind |
index() | Equivalent to str.index |
rindex() | Equivalent to str.rindex |
capitalize() | Equivalent to str.capitalize |
swapcase() | Equivalent to str.swapcase |
normalize() | Return Unicode normal form. Equivalent to unicodedata.normalize |
translate() | Equivalent to str.translate |
isalnum() | Equivalent to str.isalnum |
isalpha() | Equivalent to str.isalpha |
isdigit() | Equivalent to str.isdigit |
isspace() | Equivalent to str.isspace |
islower() | Equivalent to str.islower |
isupper() | Equivalent to str.isupper |
istitle() | Equivalent to str.istitle |
isnumeric() | Equivalent to str.isnumeric |
isdecimal() | Equivalent to str.isdecimal |