- Series
- Constructor
- Attributes
- Conversion
- Indexing, iteration
- Binary operator functions
- Function application, groupby & window
- Computations / descriptive stats
- Reindexing / selection / label manipulation
- Missing data handling
- Reshaping, sorting
- Combining / joining / merging
- Time series-related
- Accessors
- Plotting
- Serialization / IO / conversion
- Sparse
Series
Constructor
Series ([data, index, dtype, name, copy, …]) | One-dimensional ndarray with axis labels (including time series). |
Attributes
Axes
Series.index | The index (axis labels) of the Series. |
Series.array | The ExtensionArray of the data backing this Series or Index. |
Series.values | Return Series as ndarray or ndarray-like depending on the dtype. |
Series.dtype | Return the dtype object of the underlying data. |
Series.ftype | (DEPRECATED) Return if the data is sparse|dense. |
Series.shape | Return a tuple of the shape of the underlying data. |
Series.nbytes | Return the number of bytes in the underlying data. |
Series.ndim | Number of dimensions of the underlying data, by definition 1. |
Series.size | Return the number of elements in the underlying data. |
Series.strides | (DEPRECATED) Return the strides of the underlying data. |
Series.itemsize | (DEPRECATED) Return the size of the dtype of the item of the underlying data. |
Series.base | (DEPRECATED) Return the base object if the memory of the underlying data is shared. |
Series.T | Return the transpose, which is by |
Series.memory_usage (self[, index, deep]) | Return the memory usage of the Series. |
Series.hasnans | Return if I have any nans; enables various perf speedups. |
Series.flags | (DEPRECATED) |
Series.empty | |
Series.dtypes | Return the dtype object of the underlying data. |
Series.ftypes | (DEPRECATED) Return if the data is sparse|dense. |
Series.data | (DEPRECATED) Return the data pointer of the underlying data. |
Series.is_copy | Return the copy. |
Series.name | Return name of the Series. |
Series.put (self, *args, **kwargs) | (DEPRECATED) Apply the put method to its values attribute if it has one. |
Conversion
Series.astype (self, dtype[, copy, errors]) | Cast a pandas object to a specified dtype dtype . |
Series.infer_objects (self) | Attempt to infer better dtypes for object columns. |
Series.copy (self[, deep]) | Make a copy of this object’s indices and data. |
Series.bool (self) | Return the bool of a single element PandasObject. |
Series.to_numpy (self[, dtype, copy]) | A NumPy ndarray representing the values in this Series or Index. |
Series.to_period (self[, freq, copy]) | Convert Series from DatetimeIndex to PeriodIndex with desired frequency (inferred from index if not passed). |
Series.to_timestamp (self[, freq, how, copy]) | Cast to DatetimeIndex of Timestamps, at beginning of period. |
Series.to_list (self) | Return a list of the values. |
Series.get_values (self) | (DEPRECATED) Same as values (but handles sparseness conversions); is a view. |
Series.array (self[, dtype]) | Return the values as a NumPy array. |
Indexing, iteration
Series.get (self, key[, default]) | Get item from object for given key (ex: DataFrame column). |
Series.at | Access a single value for a row/column label pair. |
Series.iat | Access a single value for a row/column pair by integer position. |
Series.loc | Access a group of rows and columns by label(s) or a boolean array. |
Series.iloc | Purely integer-location based indexing for selection by position. |
Series.iter (self) | Return an iterator of the values. |
Series.items (self) | Lazily iterate over (index, value) tuples. |
Series.iteritems (self) | Lazily iterate over (index, value) tuples. |
Series.keys (self) | Return alias for index. |
Series.pop (self, item) | Return item and drop from frame. |
Series.item (self) | Return the first element of the underlying data as a python scalar. |
Series.xs (self, key[, axis, level, drop_level]) | Return cross-section from the Series/DataFrame. |
For more information on .at
, .iat
, .loc
, and.iloc
, see the indexing documentation.
Binary operator functions
Series.add (self, other[, level, fillvalue, …]) | Return Addition of series and other, element-wise (binary operator _add). |
Series.sub (self, other[, level, fillvalue, …]) | Return Subtraction of series and other, element-wise (binary operator _sub). |
Series.mul (self, other[, level, fillvalue, …]) | Return Multiplication of series and other, element-wise (binary operator _mul). |
Series.div (self, other[, level, fillvalue, …]) | Return Floating division of series and other, element-wise (binary operator _truediv). |
Series.truediv (self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator truediv). |
Series.floordiv (self, other[, level, …]) | Return Integer division of series and other, element-wise (binary operator floordiv). |
Series.mod (self, other[, level, fillvalue, …]) | Return Modulo of series and other, element-wise (binary operator _mod). |
Series.pow (self, other[, level, fillvalue, …]) | Return Exponential power of series and other, element-wise (binary operator _pow). |
Series.radd (self, other[, level, …]) | Return Addition of series and other, element-wise (binary operator radd). |
Series.rsub (self, other[, level, …]) | Return Subtraction of series and other, element-wise (binary operator rsub). |
Series.rmul (self, other[, level, …]) | Return Multiplication of series and other, element-wise (binary operator rmul). |
Series.rdiv (self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rtruediv (self, other[, level, …]) | Return Floating division of series and other, element-wise (binary operator rtruediv). |
Series.rfloordiv (self, other[, level, …]) | Return Integer division of series and other, element-wise (binary operator rfloordiv). |
Series.rmod (self, other[, level, …]) | Return Modulo of series and other, element-wise (binary operator rmod). |
Series.rpow (self, other[, level, …]) | Return Exponential power of series and other, element-wise (binary operator rpow). |
Series.combine (self, other, func[, fillvalue]) | Combine the Series with a Series or scalar according to _func. |
Series.combine_first (self, other) | Combine Series values, choosing the calling Series’s values first. |
Series.round (self[, decimals]) | Round each value in a Series to the given number of decimals. |
Series.lt (self, other[, level, fillvalue, axis]) | Return Less than of series and other, element-wise (binary operator _lt). |
Series.gt (self, other[, level, fillvalue, axis]) | Return Greater than of series and other, element-wise (binary operator _gt). |
Series.le (self, other[, level, fillvalue, axis]) | Return Less than or equal to of series and other, element-wise (binary operator _le). |
Series.ge (self, other[, level, fillvalue, axis]) | Return Greater than or equal to of series and other, element-wise (binary operator _ge). |
Series.ne (self, other[, level, fillvalue, axis]) | Return Not equal to of series and other, element-wise (binary operator _ne). |
Series.eq (self, other[, level, fillvalue, axis]) | Return Equal to of series and other, element-wise (binary operator _eq). |
Series.product (self[, axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.dot (self, other) | Compute the dot product between the Series and the columns of other. |
Function application, groupby & window
Series.apply (self, func[, convert_dtype, args]) | Invoke function on values of Series. |
Series.agg (self, func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.aggregate (self, func[, axis]) | Aggregate using one or more operations over the specified axis. |
Series.transform (self, func[, axis]) | Call func on self producing a Series with transformed values and that has the same axis length as self. |
Series.map (self, arg[, na_action]) | Map values of Series according to input correspondence. |
Series.groupby (self[, by, axis, level, …]) | Group DataFrame or Series using a mapper or by a Series of columns. |
Series.rolling (self, window[, min_periods, …]) | Provide rolling window calculations. |
Series.expanding (self[, min_periods, …]) | Provide expanding transformations. |
Series.ewm (self[, com, span, halflife, …]) | Provide exponential weighted functions. |
Series.pipe (self, func, *args, **kwargs) | Apply func(self, args, *kwargs). |
Computations / descriptive stats
Series.abs (self) | Return a Series/DataFrame with absolute numeric value of each element. |
Series.all (self[, axis, boolonly, skipna, …]) | Return whether all elements are True, potentially over an axis. |
Series.any (self[, axis, bool_only, skipna, …]) | Return whether any element is True, potentially over an axis. |
Series.autocorr (self[, lag]) | Compute the lag-N autocorrelation. |
Series.between (self, left, right[, inclusive]) | Return boolean Series equivalent to left <= series <= right. |
Series.clip (self[, lower, upper, axis, inplace]) | Trim values at input threshold(s). |
Series.clip_lower (self, threshold[, axis, …]) | (DEPRECATED) Trim values below a given threshold. |
Series.clip_upper (self, threshold[, axis, …]) | (DEPRECATED) Trim values above a given threshold. |
Series.corr (self, other[, method, min_periods]) | Compute correlation with _other Series, excluding missing values. |
Series.count (self[, level]) | Return number of non-NA/null observations in the Series. |
Series.cov (self, other[, minperiods]) | Compute covariance with Series, excluding missing values. |
Series.cummax (self[, axis, skipna]) | Return cumulative maximum over a DataFrame or Series axis. |
Series.cummin (self[, axis, skipna]) | Return cumulative minimum over a DataFrame or Series axis. |
Series.cumprod (self[, axis, skipna]) | Return cumulative product over a DataFrame or Series axis. |
Series.cumsum (self[, axis, skipna]) | Return cumulative sum over a DataFrame or Series axis. |
Series.describe (self[, percentiles, …]) | Generate descriptive statistics that summarize the central tendency, dispersion and shape of a dataset’s distribution, excluding NaN values. |
Series.diff (self[, periods]) | First discrete difference of element. |
Series.factorize (self[, sort, na_sentinel]) | Encode the object as an enumerated type or categorical variable. |
Series.kurt (self[, axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.mad (self[, axis, skipna, level]) | Return the mean absolute deviation of the values for the requested axis. |
Series.max (self[, axis, skipna, level, …]) | Return the maximum of the values for the requested axis. |
Series.mean (self[, axis, skipna, level, …]) | Return the mean of the values for the requested axis. |
Series.median (self[, axis, skipna, level, …]) | Return the median of the values for the requested axis. |
Series.min (self[, axis, skipna, level, …]) | Return the minimum of the values for the requested axis. |
Series.mode (self[, dropna]) | Return the mode(s) of the dataset. |
Series.nlargest (self[, n, keep]) | Return the largest _n elements. |
Series.nsmallest (self[, n, keep]) | Return the smallest n elements. |
Series.pct_change (self[, periods, …]) | Percentage change between the current and a prior element. |
Series.prod (self[, axis, skipna, level, …]) | Return the product of the values for the requested axis. |
Series.quantile (self[, q, interpolation]) | Return value at the given quantile. |
Series.rank (self[, axis, method, …]) | Compute numerical data ranks (1 through n) along axis. |
Series.sem (self[, axis, skipna, level, …]) | Return unbiased standard error of the mean over requested axis. |
Series.skew (self[, axis, skipna, level, …]) | Return unbiased skew over requested axis Normalized by N-1. |
Series.std (self[, axis, skipna, level, …]) | Return sample standard deviation over requested axis. |
Series.sum (self[, axis, skipna, level, …]) | Return the sum of the values for the requested axis. |
Series.var (self[, axis, skipna, level, …]) | Return unbiased variance over requested axis. |
Series.kurtosis (self[, axis, skipna, level, …]) | Return unbiased kurtosis over requested axis using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). |
Series.unique (self) | Return unique values of Series object. |
Series.nunique (self[, dropna]) | Return number of unique elements in the object. |
Series.is_unique | Return boolean if values in the object are unique. |
Series.is_monotonic | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_increasing | Return boolean if values in the object are monotonic_increasing. |
Series.is_monotonic_decreasing | Return boolean if values in the object are monotonic_decreasing. |
Series.value_counts (self[, normalize, sort, …]) | Return a Series containing counts of unique values. |
Series.compound (self[, axis, skipna, level]) | (DEPRECATED) Return the compound percentage of the values for the requested axis. |
Reindexing / selection / label manipulation
Series.align (self, other[, join, axis, …]) | Align two objects on their axes with the specified join method for each axis Index. |
Series.drop (self[, labels, axis, index, …]) | Return Series with specified index labels removed. |
Series.droplevel (self, level[, axis]) | Return DataFrame with requested index / column level(s) removed. |
Series.drop_duplicates (self[, keep, inplace]) | Return Series with duplicate values removed. |
Series.duplicated (self[, keep]) | Indicate duplicate Series values. |
Series.equals (self, other) | Test whether two objects contain the same elements. |
Series.first (self, offset) | Convenience method for subsetting initial periods of time series data based on a date offset. |
Series.head (self[, n]) | Return the first n rows. |
Series.idxmax (self[, axis, skipna]) | Return the row label of the maximum value. |
Series.idxmin (self[, axis, skipna]) | Return the row label of the minimum value. |
Series.isin (self, values) | Check whether values are contained in Series. |
Series.last (self, offset) | Convenience method for subsetting final periods of time series data based on a date offset. |
Series.reindex (self[, index]) | Conform Series to new index with optional filling logic, placing NA/NaN in locations having no value in the previous index. |
Series.reindex_like (self, other[, method, …]) | Return an object with matching indices as other object. |
Series.rename (self[, index]) | Alter Series index labels or name. |
Series.rename_axis (self[, mapper, index, …]) | Set the name of the axis for the index or columns. |
Series.reset_index (self[, level, drop, …]) | Generate a new DataFrame or Series with the index reset. |
Series.sample (self[, n, frac, replace, …]) | Return a random sample of items from an axis of object. |
Series.set_axis (self, labels[, axis, inplace]) | Assign desired index to given axis. |
Series.take (self, indices[, axis, iscopy]) | Return the elements in the given _positional indices along an axis. |
Series.tail (self[, n]) | Return the last n rows. |
Series.truncate (self[, before, after, axis, …]) | Truncate a Series or DataFrame before and after some index value. |
Series.where (self, cond[, other, inplace, …]) | Replace values where the condition is False. |
Series.mask (self, cond[, other, inplace, …]) | Replace values where the condition is True. |
Series.add_prefix (self, prefix) | Prefix labels with string prefix. |
Series.add_suffix (self, suffix) | Suffix labels with string suffix. |
Series.filter (self[, items, like, regex, axis]) | Subset rows or columns of dataframe according to labels in the specified index. |
Missing data handling
Series.isna (self) | Detect missing values. |
Series.notna (self) | Detect existing (non-missing) values. |
Series.dropna (self[, axis, inplace]) | Return a new Series with missing values removed. |
Series.fillna (self[, value, method, axis, …]) | Fill NA/NaN values using the specified method. |
Series.interpolate (self[, method, axis, …]) | Interpolate values according to different methods. |
Reshaping, sorting
Series.argsort (self[, axis, kind, order]) | Override ndarray.argsort. |
Series.argmin (self[, axis, skipna]) | (DEPRECATED) Return the row label of the minimum value. |
Series.argmax (self[, axis, skipna]) | (DEPRECATED) Return the row label of the maximum value. |
Series.reorder_levels (self, order) | Rearrange index levels using input order. |
Series.sort_values (self[, axis, ascending, …]) | Sort by the values. |
Series.sort_index (self[, axis, level, …]) | Sort Series by index labels. |
Series.swaplevel (self[, i, j, copy]) | Swap levels i and j in a MultiIndex. |
Series.unstack (self[, level, fill_value]) | Unstack, a.k.a. |
Series.explode (self) | Transform each element of a list-like to a row, replicating the index values. |
Series.searchsorted (self, value[, side, sorter]) | Find indices where elements should be inserted to maintain order. |
Series.ravel (self[, order]) | Return the flattened underlying data as an ndarray. |
Series.repeat (self, repeats[, axis]) | Repeat elements of a Series. |
Series.squeeze (self[, axis]) | Squeeze 1 dimensional axis objects into scalars. |
Series.view (self[, dtype]) | Create a new view of the Series. |
Combining / joining / merging
Series.append (self, toappend[, …]) | Concatenate two or more Series. |
Series.replace (self[, to_replace, value, …]) | Replace values given in _to_replace with value. |
Series.update (self, other) | Modify Series in place using non-NA values from passed Series. |
Time series-related
Series.asfreq (self, freq[, method, how, …]) | Convert TimeSeries to specified frequency. |
Series.asof (self, where[, subset]) | Return the last row(s) without any NaNs before where. |
Series.shift (self[, periods, freq, axis, …]) | Shift index by desired number of periods with an optional time freq. |
Series.first_valid_index (self) | Return index for first non-NA/null value. |
Series.last_valid_index (self) | Return index for last non-NA/null value. |
Series.resample (self, rule[, how, axis, …]) | Resample time-series data. |
Series.tz_convert (self, tz[, axis, level, copy]) | Convert tz-aware axis to target time zone. |
Series.tz_localize (self, tz[, axis, level, …]) | Localize tz-naive index of a Series or DataFrame to target time zone. |
Series.at_time (self, time[, asof, axis]) | Select values at particular time of day (e.g. |
Series.between_time (self, starttime, end_time) | Select values between particular times of the day (e.g., 9:00-9:30 AM). |
Series.tshift (self[, periods, freq, axis]) | Shift the time index, using the index’s frequency if available. |
Series.slice_shift (self[, periods, axis]) | Equivalent to _shift without copying data. |
Accessors
Pandas provides dtype-specific methods under various accessors.These are separate namespaces within Series
that only applyto specific data types.
Data Type | Accessor |
---|---|
Datetime, Timedelta, Period | dt |
String | str |
Categorical | cat |
Sparse | sparse |
Datetimelike properties
Series.dt
can be used to access the values of the series asdatetimelike and return several properties.These can be accessed like Series.dt.<property>
.
Datetime properties
Series.dt.date | Returns numpy array of python datetime.date objects (namely, the date part of Timestamps without timezone information). |
Series.dt.time | Returns numpy array of datetime.time. |
Series.dt.timetz | Returns numpy array of datetime.time also containing timezone information. |
Series.dt.year | The year of the datetime. |
Series.dt.month | The month as January=1, December=12. |
Series.dt.day | The days of the datetime. |
Series.dt.hour | The hours of the datetime. |
Series.dt.minute | The minutes of the datetime. |
Series.dt.second | The seconds of the datetime. |
Series.dt.microsecond | The microseconds of the datetime. |
Series.dt.nanosecond | The nanoseconds of the datetime. |
Series.dt.week | The week ordinal of the year. |
Series.dt.weekofyear | The week ordinal of the year. |
Series.dt.dayofweek | The day of the week with Monday=0, Sunday=6. |
Series.dt.weekday | The day of the week with Monday=0, Sunday=6. |
Series.dt.dayofyear | The ordinal day of the year. |
Series.dt.quarter | The quarter of the date. |
Series.dt.is_month_start | Indicates whether the date is the first day of the month. |
Series.dt.is_month_end | Indicates whether the date is the last day of the month. |
Series.dt.is_quarter_start | Indicator for whether the date is the first day of a quarter. |
Series.dt.is_quarter_end | Indicator for whether the date is the last day of a quarter. |
Series.dt.is_year_start | Indicate whether the date is the first day of a year. |
Series.dt.is_year_end | Indicate whether the date is the last day of the year. |
Series.dt.is_leap_year | Boolean indicator if the date belongs to a leap year. |
Series.dt.daysinmonth | The number of days in the month. |
Series.dt.days_in_month | The number of days in the month. |
Series.dt.tz | Return timezone, if any. |
Series.dt.freq |
Datetime methods
Series.dt.to_period (self, *args, **kwargs) | Cast to PeriodArray/Index at a particular frequency. |
Series.dt.to_pydatetime (self) | Return the data as an array of native Python datetime objects. |
Series.dt.tz_localize (self, *args, **kwargs) | Localize tz-naive Datetime Array/Index to tz-aware Datetime Array/Index. |
Series.dt.tz_convert (self, *args, **kwargs) | Convert tz-aware Datetime Array/Index from one time zone to another. |
Series.dt.normalize (self, *args, **kwargs) | Convert times to midnight. |
Series.dt.strftime (self, *args, **kwargs) | Convert to Index using specified dateformat. |
Series.dt.round (self, *args, **kwargs) | Perform round operation on the data to the specified _freq. |
Series.dt.floor (self, *args, **kwargs) | Perform floor operation on the data to the specified freq. |
Series.dt.ceil (self, *args, **kwargs) | Perform ceil operation on the data to the specified freq. |
Series.dt.month_name (self, *args, **kwargs) | Return the month names of the DateTimeIndex with specified locale. |
Series.dt.day_name (self, *args, **kwargs) | Return the day names of the DateTimeIndex with specified locale. |
Period properties
Series.dt.qyear | |
Series.dt.start_time | |
Series.dt.end_time |
Timedelta properties
Series.dt.days | Number of days for each element. |
Series.dt.seconds | Number of seconds (>= 0 and less than 1 day) for each element. |
Series.dt.microseconds | Number of microseconds (>= 0 and less than 1 second) for each element. |
Series.dt.nanoseconds | Number of nanoseconds (>= 0 and less than 1 microsecond) for each element. |
Series.dt.components | Return a Dataframe of the components of the Timedeltas. |
Timedelta methods
Series.dt.to_pytimedelta (self) | Return an array of native datetime.timedelta objects. |
Series.dt.total_seconds (self, *args, **kwargs) | Return total duration of each element expressed in seconds. |
String handling
Series.str
can be used to access the values of the series asstrings and apply several methods to it. These can be accessed likeSeries.str.<function/property>
.
Series.str.capitalize (self) | Convert strings in the Series/Index to be capitalized. |
Series.str.casefold (self) | Convert strings in the Series/Index to be casefolded. |
Series.str.cat (self[, others, sep, narep, join]) | Concatenate strings in the Series/Index with given separator. |
Series.str.center (self, width[, fillchar]) | Filling left and right side of strings in the Series/Index with an additional character. |
Series.str.contains (self, pat[, case, …]) | Test if pattern or regex is contained within a string of a Series or Index. |
Series.str.count (self, pat[, flags]) | Count occurrences of pattern in each string of the Series/Index. |
Series.str.decode (self, encoding[, errors]) | Decode character string in the Series/Index using indicated encoding. |
Series.str.encode (self, encoding[, errors]) | Encode character string in the Series/Index using indicated encoding. |
Series.str.endswith (self, pat[, na]) | Test if the end of each string element matches a pattern. |
Series.str.extract (self, pat[, flags, expand]) | Extract capture groups in the regex _pat as columns in a DataFrame. |
Series.str.extractall (self, pat[, flags]) | For each subject string in the Series, extract groups from all matches of regular expression pat. |
Series.str.find (self, sub[, start, end]) | Return lowest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.findall (self, pat[, flags]) | Find all occurrences of pattern or regular expression in the Series/Index. |
Series.str.get (self, i) | Extract element from each component at specified position. |
Series.str.index (self, sub[, start, end]) | Return lowest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.join (self, sep) | Join lists contained as elements in the Series/Index with passed delimiter. |
Series.str.len (self) | Compute the length of each element in the Series/Index. |
Series.str.ljust (self, width[, fillchar]) | Filling right side of strings in the Series/Index with an additional character. |
Series.str.lower (self) | Convert strings in the Series/Index to lowercase. |
Series.str.lstrip (self[, tostrip]) | Remove leading and trailing characters. |
Series.str.match (self, pat[, case, flags, na]) | Determine if each string matches a regular expression. |
Series.str.normalize (self, form) | Return the Unicode normal form for the strings in the Series/Index. |
Series.str.pad (self, width[, side, fillchar]) | Pad strings in the Series/Index up to width. |
Series.str.partition (self[, sep, expand]) | Split the string at the first occurrence of _sep. |
Series.str.repeat (self, repeats) | Duplicate each string in the Series or Index. |
Series.str.replace (self, pat, repl[, n, …]) | Replace occurrences of pattern/regex in the Series/Index with some other string. |
Series.str.rfind (self, sub[, start, end]) | Return highest indexes in each strings in the Series/Index where the substring is fully contained between [start:end]. |
Series.str.rindex (self, sub[, start, end]) | Return highest indexes in each strings where the substring is fully contained between [start:end]. |
Series.str.rjust (self, width[, fillchar]) | Filling left side of strings in the Series/Index with an additional character. |
Series.str.rpartition (self[, sep, expand]) | Split the string at the last occurrence of sep. |
Series.str.rstrip (self[, to_strip]) | Remove leading and trailing characters. |
Series.str.slice (self[, start, stop, step]) | Slice substrings from each element in the Series or Index. |
Series.str.slice_replace (self[, start, …]) | Replace a positional slice of a string with another value. |
Series.str.split (self[, pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.rsplit (self[, pat, n, expand]) | Split strings around given separator/delimiter. |
Series.str.startswith (self, pat[, na]) | Test if the start of each string element matches a pattern. |
Series.str.strip (self[, to_strip]) | Remove leading and trailing characters. |
Series.str.swapcase (self) | Convert strings in the Series/Index to be swapcased. |
Series.str.title (self) | Convert strings in the Series/Index to titlecase. |
Series.str.translate (self, table) | Map all characters in the string through the given mapping table. |
Series.str.upper (self) | Convert strings in the Series/Index to uppercase. |
Series.str.wrap (self, width, **kwargs) | Wrap long strings in the Series/Index to be formatted in paragraphs with length less than a given width. |
Series.str.zfill (self, width) | Pad strings in the Series/Index by prepending ‘0’ characters. |
Series.str.isalnum (self) | Check whether all characters in each string are alphanumeric. |
Series.str.isalpha (self) | Check whether all characters in each string are alphabetic. |
Series.str.isdigit (self) | Check whether all characters in each string are digits. |
Series.str.isspace (self) | Check whether all characters in each string are whitespace. |
Series.str.islower (self) | Check whether all characters in each string are lowercase. |
Series.str.isupper (self) | Check whether all characters in each string are uppercase. |
Series.str.istitle (self) | Check whether all characters in each string are titlecase. |
Series.str.isnumeric (self) | Check whether all characters in each string are numeric. |
Series.str.isdecimal (self) | Check whether all characters in each string are decimal. |
Series.str.get_dummies (self[, sep]) | Split each string in the Series by sep and return a DataFrame of dummy/indicator variables. |
Categorical accessor
Categorical-dtype specific methods and attributes are available underthe Series.cat
accessor.
Series.cat.categories | The categories of this categorical. |
Series.cat.ordered | Whether the categories have an ordered relationship. |
Series.cat.codes | Return Series of codes as well as the index. |
Series.cat.rename_categories (self, *args, …) | Rename categories. |
Series.cat.reorder_categories (self, *args, …) | Reorder categories as specified in new_categories. |
Series.cat.add_categories (self, *args, …) | Add new categories. |
Series.cat.remove_categories (self, *args, …) | Remove the specified categories. |
Series.cat.remove_unused_categories (self, …) | Remove categories which are not used. |
Series.cat.set_categories (self, *args, …) | Set the categories to the specified new_categories. |
Series.cat.as_ordered (self, *args, **kwargs) | Set the Categorical to be ordered. |
Series.cat.as_unordered (self, *args, **kwargs) | Set the Categorical to be unordered. |
Sparse accessor
Sparse-dtype specific methods and attributes are provided under theSeries.sparse
accessor.
Series.sparse.npoints | The number of non- fillvalue points. |
Series.sparse.density | The percent of non- fill_value points, as decimal. |
Series.sparse.fill_value | Elements in _data that are fill_value are not stored. |
Series.sparse.sp_values | An ndarray containing the non- fill_value values. |
Series.sparse.from_coo (A[, dense_index]) | Create a SparseSeries from a scipy.sparse.coo_matrix. |
Series.sparse.to_coo (self[, row_levels, …]) | Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
Plotting
Series.plot
is both a callable method and a namespace attribute forspecific plotting methods of the form Series.plot.<kind>
.
Series.plot ([kind, ax, figsize, ….]) | Series plotting accessor and method |
Series.plot.area (self[, x, y]) | Draw a stacked area plot. |
Series.plot.bar (self[, x, y]) | Vertical bar plot. |
Series.plot.barh (self[, x, y]) | Make a horizontal bar plot. |
Series.plot.box (self[, by]) | Make a box plot of the DataFrame columns. |
Series.plot.density (self[, bw_method, ind]) | Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.hist (self[, by, bins]) | Draw one histogram of the DataFrame’s columns. |
Series.plot.kde (self[, bw_method, ind]) | Generate Kernel Density Estimate plot using Gaussian kernels. |
Series.plot.line (self[, x, y]) | Plot Series or DataFrame as lines. |
Series.plot.pie (self, **kwargs) | Generate a pie plot. |
Series.hist (self[, by, ax, grid, …]) | Draw histogram of the input series using matplotlib. |
Serialization / IO / conversion
Series.to_pickle (self, path[, compression, …]) | Pickle (serialize) object to file. |
Series.to_csv (self, *args, **kwargs) | Write object to a comma-separated values (csv) file. |
Series.to_dict (self[, into]) | Convert Series to {label -> value} dict or dict-like object. |
Series.to_excel (self, excel_writer[, …]) | Write object to an Excel sheet. |
Series.to_frame (self[, name]) | Convert Series to DataFrame. |
Series.to_xarray (self) | Return an xarray object from the pandas object. |
Series.to_hdf (self, path_or_buf, key, **kwargs) | Write the contained data to an HDF5 file using HDFStore. |
Series.to_sql (self, name, con[, schema, …]) | Write records stored in a DataFrame to a SQL database. |
Series.to_msgpack (self[, path_or_buf, encoding]) | (DEPRECATED) Serialize object to input file path using msgpack format. |
Series.to_json (self[, path_or_buf, orient, …]) | Convert the object to a JSON string. |
Series.to_sparse (self[, kind, fill_value]) | (DEPRECATED) Convert Series to SparseSeries. |
Series.to_dense (self) | (DEPRECATED) Return dense representation of Series/DataFrame (as opposed to sparse). |
Series.to_string (self[, buf, na_rep, …]) | Render a string representation of the Series. |
Series.to_clipboard (self[, excel, sep]) | Copy object to the system clipboard. |
Series.to_latex (self[, buf, columns, …]) | Render an object to a LaTeX tabular environment table. |
Sparse
SparseSeries.to_coo (self[, row_levels, …]) | Create a scipy.sparse.coo_matrix from a SparseSeries with MultiIndex. |
SparseSeries.from_coo (A[, dense_index]) | Create a SparseSeries from a scipy.sparse.coo_matrix. |