Reshaping and pivot tables
Reshaping by pivoting DataFrame objects
Data is often stored in so-called “stacked” or “record” format:
- In [1]: df
- Out[1]:
- date variable value
- 0 2000-01-03 A 0.469112
- 1 2000-01-04 A -0.282863
- 2 2000-01-05 A -1.509059
- 3 2000-01-03 B -1.135632
- 4 2000-01-04 B 1.212112
- 5 2000-01-05 B -0.173215
- 6 2000-01-03 C 0.119209
- 7 2000-01-04 C -1.044236
- 8 2000-01-05 C -0.861849
- 9 2000-01-03 D -2.104569
- 10 2000-01-04 D -0.494929
- 11 2000-01-05 D 1.071804
For the curious here is how the above DataFrame
was created:
- import pandas.util.testing as tm
- tm.N = 3
- def unpivot(frame):
- N, K = frame.shape
- data = {'value': frame.to_numpy().ravel('F'),
- 'variable': np.asarray(frame.columns).repeat(N),
- 'date': np.tile(np.asarray(frame.index), K)}
- return pd.DataFrame(data, columns=['date', 'variable', 'value'])
- df = unpivot(tm.makeTimeDataFrame())
To select out everything for variable A
we could do:
- In [2]: df[df['variable'] == 'A']
- Out[2]:
- date variable value
- 0 2000-01-03 A 0.469112
- 1 2000-01-04 A -0.282863
- 2 2000-01-05 A -1.509059
But suppose we wish to do time series operations with the variables. A betterrepresentation would be where the columns
are the unique variables and anindex
of dates identifies individual observations. To reshape the data intothis form, we use the DataFrame.pivot()
method (also implemented as atop level function pivot()
):
- In [3]: df.pivot(index='date', columns='variable', values='value')
- Out[3]:
- variable A B C D
- date
- 2000-01-03 0.469112 -1.135632 0.119209 -2.104569
- 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929
- 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804
If the values
argument is omitted, and the input DataFrame
has more thanone column of values which are not used as column or index inputs to pivot
,then the resulting “pivoted” DataFrame
will have hierarchical columns whose topmost level indicates the respective valuecolumn:
- In [4]: df['value2'] = df['value'] * 2
- In [5]: pivoted = df.pivot(index='date', columns='variable')
- In [6]: pivoted
- Out[6]:
- value value2
- variable A B C D A B C D
- date
- 2000-01-03 0.469112 -1.135632 0.119209 -2.104569 0.938225 -2.271265 0.238417 -4.209138
- 2000-01-04 -0.282863 1.212112 -1.044236 -0.494929 -0.565727 2.424224 -2.088472 -0.989859
- 2000-01-05 -1.509059 -0.173215 -0.861849 1.071804 -3.018117 -0.346429 -1.723698 2.143608
You can then select subsets from the pivoted DataFrame
:
- In [7]: pivoted['value2']
- Out[7]:
- variable A B C D
- date
- 2000-01-03 0.938225 -2.271265 0.238417 -4.209138
- 2000-01-04 -0.565727 2.424224 -2.088472 -0.989859
- 2000-01-05 -3.018117 -0.346429 -1.723698 2.143608
Note that this returns a view on the underlying data in the case where the dataare homogeneously-typed.
Note
pivot()
will error with a ValueError: Index contains duplicateentries, cannot reshape
if the index/column pair is not unique. In thiscase, consider using pivot_table()
which is a generalizationof pivot that can handle duplicate values for one index/column pair.
Reshaping by stacking and unstacking
Closely related to the pivot()
method are the relatedstack()
and unstack()
methods available onSeries
and DataFrame
. These methods are designed to work together withMultiIndex
objects (see the section on hierarchical indexing). Here are essentially what these methods do:
stack
: “pivot” a level of the (possibly hierarchical) column labels,returning aDataFrame
with an index with a new inner-most level of rowlabels.unstack
: (inverse operation ofstack
) “pivot” a level of the(possibly hierarchical) row index to the column axis, producing a reshapedDataFrame
with a new inner-most level of column labels.The clearest way to explain is by example. Let’s take a prior example data setfrom the hierarchical indexing section:
- In [8]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
- ...: 'foo', 'foo', 'qux', 'qux'],
- ...: ['one', 'two', 'one', 'two',
- ...: 'one', 'two', 'one', 'two']]))
- ...:
- In [9]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
- In [10]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
- In [11]: df2 = df[:4]
- In [12]: df2
- Out[12]:
- A B
- first second
- bar one 0.721555 -0.706771
- two -1.039575 0.271860
- baz one -0.424972 0.567020
- two 0.276232 -1.087401
The stack
function “compresses” a level in the DataFrame
’s columns toproduce either:
- A
Series
, in the case of a simple column Index. - A
DataFrame
, in the case of aMultiIndex
in the columns.
If the columns have a MultiIndex
, you can choose which level to stack. Thestacked level becomes the new lowest level in a MultiIndex
on the columns:
- In [13]: stacked = df2.stack()
- In [14]: stacked
- Out[14]:
- first second
- bar one A 0.721555
- B -0.706771
- two A -1.039575
- B 0.271860
- baz one A -0.424972
- B 0.567020
- two A 0.276232
- B -1.087401
- dtype: float64
With a “stacked” DataFrame
or Series
(having a MultiIndex
as theindex
), the inverse operation of stack
is unstack
, which by defaultunstacks the last level:
- In [15]: stacked.unstack()
- Out[15]:
- A B
- first second
- bar one 0.721555 -0.706771
- two -1.039575 0.271860
- baz one -0.424972 0.567020
- two 0.276232 -1.087401
- In [16]: stacked.unstack(1)
- Out[16]:
- second one two
- first
- bar A 0.721555 -1.039575
- B -0.706771 0.271860
- baz A -0.424972 0.276232
- B 0.567020 -1.087401
- In [17]: stacked.unstack(0)
- Out[17]:
- first bar baz
- second
- one A 0.721555 -0.424972
- B -0.706771 0.567020
- two A -1.039575 0.276232
- B 0.271860 -1.087401
If the indexes have names, you can use the level names instead of specifyingthe level numbers:
- In [18]: stacked.unstack('second')
- Out[18]:
- second one two
- first
- bar A 0.721555 -1.039575
- B -0.706771 0.271860
- baz A -0.424972 0.276232
- B 0.567020 -1.087401
Notice that the stack
and unstack
methods implicitly sort the indexlevels involved. Hence a call to stack
and then unstack
, or vice versa,will result in a sorted copy of the original DataFrame
or Series
:
- In [19]: index = pd.MultiIndex.from_product([[2, 1], ['a', 'b']])
- In [20]: df = pd.DataFrame(np.random.randn(4), index=index, columns=['A'])
- In [21]: df
- Out[21]:
- A
- 2 a -0.370647
- b -1.157892
- 1 a -1.344312
- b 0.844885
- In [22]: all(df.unstack().stack() == df.sort_index())
- Out[22]: True
The above code will raise a TypeError
if the call to sort_index
isremoved.
Multiple levels
You may also stack or unstack more than one level at a time by passing a listof levels, in which case the end result is as if each level in the list wereprocessed individually.
- In [23]: columns = pd.MultiIndex.from_tuples([
- ....: ('A', 'cat', 'long'), ('B', 'cat', 'long'),
- ....: ('A', 'dog', 'short'), ('B', 'dog', 'short')],
- ....: names=['exp', 'animal', 'hair_length']
- ....: )
- ....:
- In [24]: df = pd.DataFrame(np.random.randn(4, 4), columns=columns)
- In [25]: df
- Out[25]:
- exp A B A B
- animal cat cat dog dog
- hair_length long long short short
- 0 1.075770 -0.109050 1.643563 -1.469388
- 1 0.357021 -0.674600 -1.776904 -0.968914
- 2 -1.294524 0.413738 0.276662 -0.472035
- 3 -0.013960 -0.362543 -0.006154 -0.923061
- In [26]: df.stack(level=['animal', 'hair_length'])
- Out[26]:
- exp A B
- animal hair_length
- 0 cat long 1.075770 -0.109050
- dog short 1.643563 -1.469388
- 1 cat long 0.357021 -0.674600
- dog short -1.776904 -0.968914
- 2 cat long -1.294524 0.413738
- dog short 0.276662 -0.472035
- 3 cat long -0.013960 -0.362543
- dog short -0.006154 -0.923061
The list of levels can contain either level names or level numbers (butnot a mixture of the two).
- # df.stack(level=['animal', 'hair_length'])
- # from above is equivalent to:
- In [27]: df.stack(level=[1, 2])
- Out[27]:
- exp A B
- animal hair_length
- 0 cat long 1.075770 -0.109050
- dog short 1.643563 -1.469388
- 1 cat long 0.357021 -0.674600
- dog short -1.776904 -0.968914
- 2 cat long -1.294524 0.413738
- dog short 0.276662 -0.472035
- 3 cat long -0.013960 -0.362543
- dog short -0.006154 -0.923061
Missing data
These functions are intelligent about handling missing data and do not expecteach subgroup within the hierarchical index to have the same set of labels.They also can handle the index being unsorted (but you can make it sorted bycalling sort_index
, of course). Here is a more complex example:
- In [28]: columns = pd.MultiIndex.from_tuples([('A', 'cat'), ('B', 'dog'),
- ....: ('B', 'cat'), ('A', 'dog')],
- ....: names=['exp', 'animal'])
- ....:
- In [29]: index = pd.MultiIndex.from_product([('bar', 'baz', 'foo', 'qux'),
- ....: ('one', 'two')],
- ....: names=['first', 'second'])
- ....:
- In [30]: df = pd.DataFrame(np.random.randn(8, 4), index=index, columns=columns)
- In [31]: df2 = df.iloc[[0, 1, 2, 4, 5, 7]]
- In [32]: df2
- Out[32]:
- exp A B A
- animal cat dog cat dog
- first second
- bar one 0.895717 0.805244 -1.206412 2.565646
- two 1.431256 1.340309 -1.170299 -0.226169
- baz one 0.410835 0.813850 0.132003 -0.827317
- foo one -1.413681 1.607920 1.024180 0.569605
- two 0.875906 -2.211372 0.974466 -2.006747
- qux two -1.226825 0.769804 -1.281247 -0.727707
As mentioned above, stack
can be called with a level
argument to selectwhich level in the columns to stack:
- In [33]: df2.stack('exp')
- Out[33]:
- animal cat dog
- first second exp
- bar one A 0.895717 2.565646
- B -1.206412 0.805244
- two A 1.431256 -0.226169
- B -1.170299 1.340309
- baz one A 0.410835 -0.827317
- B 0.132003 0.813850
- foo one A -1.413681 0.569605
- B 1.024180 1.607920
- two A 0.875906 -2.006747
- B 0.974466 -2.211372
- qux two A -1.226825 -0.727707
- B -1.281247 0.769804
- In [34]: df2.stack('animal')
- Out[34]:
- exp A B
- first second animal
- bar one cat 0.895717 -1.206412
- dog 2.565646 0.805244
- two cat 1.431256 -1.170299
- dog -0.226169 1.340309
- baz one cat 0.410835 0.132003
- dog -0.827317 0.813850
- foo one cat -1.413681 1.024180
- dog 0.569605 1.607920
- two cat 0.875906 0.974466
- dog -2.006747 -2.211372
- qux two cat -1.226825 -1.281247
- dog -0.727707 0.769804
Unstacking can result in missing values if subgroups do not have the sameset of labels. By default, missing values will be replaced with the defaultfill value for that data type, NaN
for float, NaT
for datetimelike,etc. For integer types, by default data will converted to float and missingvalues will be set to NaN
.
- In [35]: df3 = df.iloc[[0, 1, 4, 7], [1, 2]]
- In [36]: df3
- Out[36]:
- exp B
- animal dog cat
- first second
- bar one 0.805244 -1.206412
- two 1.340309 -1.170299
- foo one 1.607920 1.024180
- qux two 0.769804 -1.281247
- In [37]: df3.unstack()
- Out[37]:
- exp B
- animal dog cat
- second one two one two
- first
- bar 0.805244 1.340309 -1.206412 -1.170299
- foo 1.607920 NaN 1.024180 NaN
- qux NaN 0.769804 NaN -1.281247
New in version 0.18.0.
Alternatively, unstack takes an optional fill_value
argument, for specifyingthe value of missing data.
- In [38]: df3.unstack(fill_value=-1e9)
- Out[38]:
- exp B
- animal dog cat
- second one two one two
- first
- bar 8.052440e-01 1.340309e+00 -1.206412e+00 -1.170299e+00
- foo 1.607920e+00 -1.000000e+09 1.024180e+00 -1.000000e+09
- qux -1.000000e+09 7.698036e-01 -1.000000e+09 -1.281247e+00
With a MultiIndex
Unstacking when the columns are a MultiIndex
is also careful about doingthe right thing:
- In [39]: df[:3].unstack(0)
- Out[39]:
- exp A B A
- animal cat dog cat dog
- first bar baz bar baz bar baz bar baz
- second
- one 0.895717 0.410835 0.805244 0.81385 -1.206412 0.132003 2.565646 -0.827317
- two 1.431256 NaN 1.340309 NaN -1.170299 NaN -0.226169 NaN
- In [40]: df2.unstack(1)
- Out[40]:
- exp A B A
- animal cat dog cat dog
- second one two one two one two one two
- first
- bar 0.895717 1.431256 0.805244 1.340309 -1.206412 -1.170299 2.565646 -0.226169
- baz 0.410835 NaN 0.813850 NaN 0.132003 NaN -0.827317 NaN
- foo -1.413681 0.875906 1.607920 -2.211372 1.024180 0.974466 0.569605 -2.006747
- qux NaN -1.226825 NaN 0.769804 NaN -1.281247 NaN -0.727707
Reshaping by Melt
The top-level melt()
function and the corresponding DataFrame.melt()
are useful to massage a DataFrame
into a format where one or more columnsare identifier variables, while all other columns, considered measuredvariables, are “unpivoted” to the row axis, leaving just two non-identifiercolumns, “variable” and “value”. The names of those columns can be customizedby supplying the var_name
and value_name
parameters.
For instance,
- In [41]: cheese = pd.DataFrame({'first': ['John', 'Mary'],
- ....: 'last': ['Doe', 'Bo'],
- ....: 'height': [5.5, 6.0],
- ....: 'weight': [130, 150]})
- ....:
- In [42]: cheese
- Out[42]:
- first last height weight
- 0 John Doe 5.5 130
- 1 Mary Bo 6.0 150
- In [43]: cheese.melt(id_vars=['first', 'last'])
- Out[43]:
- first last variable value
- 0 John Doe height 5.5
- 1 Mary Bo height 6.0
- 2 John Doe weight 130.0
- 3 Mary Bo weight 150.0
- In [44]: cheese.melt(id_vars=['first', 'last'], var_name='quantity')
- Out[44]:
- first last quantity value
- 0 John Doe height 5.5
- 1 Mary Bo height 6.0
- 2 John Doe weight 130.0
- 3 Mary Bo weight 150.0
Another way to transform is to use the wide_to_long()
panel dataconvenience function. It is less flexible than melt()
, but moreuser-friendly.
- In [45]: dft = pd.DataFrame({"A1970": {0: "a", 1: "b", 2: "c"},
- ....: "A1980": {0: "d", 1: "e", 2: "f"},
- ....: "B1970": {0: 2.5, 1: 1.2, 2: .7},
- ....: "B1980": {0: 3.2, 1: 1.3, 2: .1},
- ....: "X": dict(zip(range(3), np.random.randn(3)))
- ....: })
- ....:
- In [46]: dft["id"] = dft.index
- In [47]: dft
- Out[47]:
- A1970 A1980 B1970 B1980 X id
- 0 a d 2.5 3.2 -0.121306 0
- 1 b e 1.2 1.3 -0.097883 1
- 2 c f 0.7 0.1 0.695775 2
- In [48]: pd.wide_to_long(dft, ["A", "B"], i="id", j="year")
- Out[48]:
- X A B
- id year
- 0 1970 -0.121306 a 2.5
- 1 1970 -0.097883 b 1.2
- 2 1970 0.695775 c 0.7
- 0 1980 -0.121306 d 3.2
- 1 1980 -0.097883 e 1.3
- 2 1980 0.695775 f 0.1
Combining with stats and GroupBy
It should be no shock that combining pivot
/ stack
/ unstack
withGroupBy and the basic Series and DataFrame statistical functions can producesome very expressive and fast data manipulations.
- In [49]: df
- Out[49]:
- exp A B A
- animal cat dog cat dog
- first second
- bar one 0.895717 0.805244 -1.206412 2.565646
- two 1.431256 1.340309 -1.170299 -0.226169
- baz one 0.410835 0.813850 0.132003 -0.827317
- two -0.076467 -1.187678 1.130127 -1.436737
- foo one -1.413681 1.607920 1.024180 0.569605
- two 0.875906 -2.211372 0.974466 -2.006747
- qux one -0.410001 -0.078638 0.545952 -1.219217
- two -1.226825 0.769804 -1.281247 -0.727707
- In [50]: df.stack().mean(1).unstack()
- Out[50]:
- animal cat dog
- first second
- bar one -0.155347 1.685445
- two 0.130479 0.557070
- baz one 0.271419 -0.006733
- two 0.526830 -1.312207
- foo one -0.194750 1.088763
- two 0.925186 -2.109060
- qux one 0.067976 -0.648927
- two -1.254036 0.021048
- # same result, another way
- In [51]: df.groupby(level=1, axis=1).mean()
- Out[51]:
- animal cat dog
- first second
- bar one -0.155347 1.685445
- two 0.130479 0.557070
- baz one 0.271419 -0.006733
- two 0.526830 -1.312207
- foo one -0.194750 1.088763
- two 0.925186 -2.109060
- qux one 0.067976 -0.648927
- two -1.254036 0.021048
- In [52]: df.stack().groupby(level=1).mean()
- Out[52]:
- exp A B
- second
- one 0.071448 0.455513
- two -0.424186 -0.204486
- In [53]: df.mean().unstack(0)
- Out[53]:
- exp A B
- animal
- cat 0.060843 0.018596
- dog -0.413580 0.232430
Pivot tables
While pivot()
provides general purpose pivoting with variousdata types (strings, numerics, etc.), pandas also provides pivot_table()
for pivoting with aggregation of numeric data.
The function pivot_table()
can be used to create spreadsheet-stylepivot tables. See the cookbook for some advancedstrategies.
It takes a number of arguments:
data
: a DataFrame object.values
: a column or a list of columns to aggregate.index
: a column, Grouper, array which has the same length as data, or list of them.Keys to group by on the pivot table index. If an array is passed, it is being used as the same manner as column values.columns
: a column, Grouper, array which has the same length as data, or list of them.Keys to group by on the pivot table column. If an array is passed, it is being used as the same manner as column values.aggfunc
: function to use for aggregation, defaulting tonumpy.mean
.
Consider a data set like this:
- In [54]: import datetime
- In [55]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 6,
- ....: 'B': ['A', 'B', 'C'] * 8,
- ....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 4,
- ....: 'D': np.random.randn(24),
- ....: 'E': np.random.randn(24),
- ....: 'F': [datetime.datetime(2013, i, 1) for i in range(1, 13)]
- ....: + [datetime.datetime(2013, i, 15) for i in range(1, 13)]})
- ....:
- In [56]: df
- Out[56]:
- A B C D E F
- 0 one A foo 0.341734 -0.317441 2013-01-01
- 1 one B foo 0.959726 -1.236269 2013-02-01
- 2 two C foo -1.110336 0.896171 2013-03-01
- 3 three A bar -0.619976 -0.487602 2013-04-01
- 4 one B bar 0.149748 -0.082240 2013-05-01
- .. ... .. ... ... ... ...
- 19 three B foo 0.690579 -2.213588 2013-08-15
- 20 one C foo 0.995761 1.063327 2013-09-15
- 21 one A bar 2.396780 1.266143 2013-10-15
- 22 two B bar 0.014871 0.299368 2013-11-15
- 23 three C bar 3.357427 -0.863838 2013-12-15
- [24 rows x 6 columns]
We can produce pivot tables from this data very easily:
- In [57]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
- Out[57]:
- C bar foo
- A B
- one A 1.120915 -0.514058
- B -0.338421 0.002759
- C -0.538846 0.699535
- three A -1.181568 NaN
- B NaN 0.433512
- C 0.588783 NaN
- two A NaN 1.000985
- B 0.158248 NaN
- C NaN 0.176180
- In [58]: pd.pivot_table(df, values='D', index=['B'], columns=['A', 'C'], aggfunc=np.sum)
- Out[58]:
- A one three two
- C bar foo bar foo bar foo
- B
- A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971
- B -0.676843 0.005518 NaN 0.867024 0.316495 NaN
- C -1.077692 1.399070 1.177566 NaN NaN 0.352360
- In [59]: pd.pivot_table(df, values=['D', 'E'], index=['B'], columns=['A', 'C'],
- ....: aggfunc=np.sum)
- ....:
- Out[59]:
- D E
- A one three two one three two
- C bar foo bar foo bar foo bar foo bar foo bar foo
- B
- A 2.241830 -1.028115 -2.363137 NaN NaN 2.001971 2.786113 -0.043211 1.922577 NaN NaN 0.128491
- B -0.676843 0.005518 NaN 0.867024 0.316495 NaN 1.368280 -1.103384 NaN -2.128743 -0.194294 NaN
- C -1.077692 1.399070 1.177566 NaN NaN 0.352360 -1.976883 1.495717 -0.263660 NaN NaN 0.872482
The result object is a DataFrame
having potentially hierarchical indexes on therows and columns. If the values
column name is not given, the pivot tablewill include all of the data that can be aggregated in an additional level ofhierarchy in the columns:
- In [60]: pd.pivot_table(df, index=['A', 'B'], columns=['C'])
- Out[60]:
- D E
- C bar foo bar foo
- A B
- one A 1.120915 -0.514058 1.393057 -0.021605
- B -0.338421 0.002759 0.684140 -0.551692
- C -0.538846 0.699535 -0.988442 0.747859
- three A -1.181568 NaN 0.961289 NaN
- B NaN 0.433512 NaN -1.064372
- C 0.588783 NaN -0.131830 NaN
- two A NaN 1.000985 NaN 0.064245
- B 0.158248 NaN -0.097147 NaN
- C NaN 0.176180 NaN 0.436241
Also, you can use Grouper
for index
and columns
keywords. For detail of Grouper
, see Grouping with a Grouper specification.
- In [61]: pd.pivot_table(df, values='D', index=pd.Grouper(freq='M', key='F'),
- ....: columns='C')
- ....:
- Out[61]:
- C bar foo
- F
- 2013-01-31 NaN -0.514058
- 2013-02-28 NaN 0.002759
- 2013-03-31 NaN 0.176180
- 2013-04-30 -1.181568 NaN
- 2013-05-31 -0.338421 NaN
- 2013-06-30 -0.538846 NaN
- 2013-07-31 NaN 1.000985
- 2013-08-31 NaN 0.433512
- 2013-09-30 NaN 0.699535
- 2013-10-31 1.120915 NaN
- 2013-11-30 0.158248 NaN
- 2013-12-31 0.588783 NaN
You can render a nice output of the table omitting the missing values bycalling to_string
if you wish:
- In [62]: table = pd.pivot_table(df, index=['A', 'B'], columns=['C'])
- In [63]: print(table.to_string(na_rep=''))
- D E
- C bar foo bar foo
- A B
- one A 1.120915 -0.514058 1.393057 -0.021605
- B -0.338421 0.002759 0.684140 -0.551692
- C -0.538846 0.699535 -0.988442 0.747859
- three A -1.181568 0.961289
- B 0.433512 -1.064372
- C 0.588783 -0.131830
- two A 1.000985 0.064245
- B 0.158248 -0.097147
- C 0.176180 0.436241
- Note that
pivot_table
is also available as an instance method on DataFrame, - i.e.
DataFrame.pivot_table()
.
Adding margins
If you pass margins=True
to pivot_table
, special All
columns androws will be added with partial group aggregates across the categories on therows and columns:
- In [64]: df.pivot_table(index=['A', 'B'], columns='C', margins=True, aggfunc=np.std)
- Out[64]:
- D E
- C bar foo All bar foo All
- A B
- one A 1.804346 1.210272 1.569879 0.179483 0.418374 0.858005
- B 0.690376 1.353355 0.898998 1.083825 0.968138 1.101401
- C 0.273641 0.418926 0.771139 1.689271 0.446140 1.422136
- three A 0.794212 NaN 0.794212 2.049040 NaN 2.049040
- B NaN 0.363548 0.363548 NaN 1.625237 1.625237
- C 3.915454 NaN 3.915454 1.035215 NaN 1.035215
- two A NaN 0.442998 0.442998 NaN 0.447104 0.447104
- B 0.202765 NaN 0.202765 0.560757 NaN 0.560757
- C NaN 1.819408 1.819408 NaN 0.650439 0.650439
- All 1.556686 0.952552 1.246608 1.250924 0.899904 1.059389
Cross tabulations
Use crosstab()
to compute a cross-tabulation of two (or more)factors. By default crosstab
computes a frequency table of the factorsunless an array of values and an aggregation function are passed.
It takes a number of arguments
index
: array-like, values to group by in the rows.columns
: array-like, values to group by in the columns.values
: array-like, optional, array of values to aggregate according tothe factors.aggfunc
: function, optional, If no values array is passed, computes afrequency table.rownames
: sequence, defaultNone
, must match number of row arrays passed.colnames
: sequence, defaultNone
, if passed, must match number of columnarrays passed.margins
: boolean, defaultFalse
, Add row/column margins (subtotals)normalize
: boolean, {‘all’, ‘index’, ‘columns’}, or {0,1}, defaultFalse
.Normalize by dividing all values by the sum of values.
Any Series
passed will have their name attributes used unless row or columnnames for the cross-tabulation are specified
For example:
- In [65]: foo, bar, dull, shiny, one, two = 'foo', 'bar', 'dull', 'shiny', 'one', 'two'
- In [66]: a = np.array([foo, foo, bar, bar, foo, foo], dtype=object)
- In [67]: b = np.array([one, one, two, one, two, one], dtype=object)
- In [68]: c = np.array([dull, dull, shiny, dull, dull, shiny], dtype=object)
- In [69]: pd.crosstab(a, [b, c], rownames=['a'], colnames=['b', 'c'])
- Out[69]:
- b one two
- c dull shiny dull shiny
- a
- bar 1 0 0 1
- foo 2 1 1 0
If crosstab
receives only two Series, it will provide a frequency table.
- In [70]: df = pd.DataFrame({'A': [1, 2, 2, 2, 2], 'B': [3, 3, 4, 4, 4],
- ....: 'C': [1, 1, np.nan, 1, 1]})
- ....:
- In [71]: df
- Out[71]:
- A B C
- 0 1 3 1.0
- 1 2 3 1.0
- 2 2 4 NaN
- 3 2 4 1.0
- 4 2 4 1.0
- In [72]: pd.crosstab(df.A, df.B)
- Out[72]:
- B 3 4
- A
- 1 1 0
- 2 1 3
Any input passed containing Categorical
data will have all of itscategories included in the cross-tabulation, even if the actual data doesnot contain any instances of a particular category.
- In [73]: foo = pd.Categorical(['a', 'b'], categories=['a', 'b', 'c'])
- In [74]: bar = pd.Categorical(['d', 'e'], categories=['d', 'e', 'f'])
- In [75]: pd.crosstab(foo, bar)
- Out[75]:
- col_0 d e
- row_0
- a 1 0
- b 0 1
Normalization
New in version 0.18.1.
Frequency tables can also be normalized to show percentages rather than countsusing the normalize
argument:
- In [76]: pd.crosstab(df.A, df.B, normalize=True)
- Out[76]:
- B 3 4
- A
- 1 0.2 0.0
- 2 0.2 0.6
normalize
can also normalize values within each row or within each column:
- In [77]: pd.crosstab(df.A, df.B, normalize='columns')
- Out[77]:
- B 3 4
- A
- 1 0.5 0.0
- 2 0.5 1.0
crosstab
can also be passed a third Series
and an aggregation function(aggfunc
) that will be applied to the values of the third Series
withineach group defined by the first two Series
:
- In [78]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum)
- Out[78]:
- B 3 4
- A
- 1 1.0 NaN
- 2 1.0 2.0
Adding margins
Finally, one can also add margins or normalize this output.
- In [79]: pd.crosstab(df.A, df.B, values=df.C, aggfunc=np.sum, normalize=True,
- ....: margins=True)
- ....:
- Out[79]:
- B 3 4 All
- A
- 1 0.25 0.0 0.25
- 2 0.25 0.5 0.75
- All 0.50 0.5 1.00
Tiling
The cut()
function computes groupings for the values of the inputarray and is often used to transform continuous variables to discrete orcategorical variables:
- In [80]: ages = np.array([10, 15, 13, 12, 23, 25, 28, 59, 60])
- In [81]: pd.cut(ages, bins=3)
- Out[81]:
- [(9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (9.95, 26.667], (26.667, 43.333], (43.333, 60.0], (43.333, 60.0]]
- Categories (3, interval[float64]): [(9.95, 26.667] < (26.667, 43.333] < (43.333, 60.0]]
If the bins
keyword is an integer, then equal-width bins are formed.Alternatively we can specify custom bin-edges:
- In [82]: c = pd.cut(ages, bins=[0, 18, 35, 70])
- In [83]: c
- Out[83]:
- [(0, 18], (0, 18], (0, 18], (0, 18], (18, 35], (18, 35], (18, 35], (35, 70], (35, 70]]
- Categories (3, interval[int64]): [(0, 18] < (18, 35] < (35, 70]]
New in version 0.20.0.
If the bins
keyword is an IntervalIndex
, then these will beused to bin the passed data.:
- pd.cut([25, 20, 50], bins=c.categories)
Computing indicator / dummy variables
To convert a categorical variable into a “dummy” or “indicator” DataFrame
,for example a column in a DataFrame
(a Series
) which has k
distinctvalues, can derive a DataFrame
containing k
columns of 1s and 0s usingget_dummies()
:
- In [84]: df = pd.DataFrame({'key': list('bbacab'), 'data1': range(6)})
- In [85]: pd.get_dummies(df['key'])
- Out[85]:
- a b c
- 0 0 1 0
- 1 0 1 0
- 2 1 0 0
- 3 0 0 1
- 4 1 0 0
- 5 0 1 0
Sometimes it’s useful to prefix the column names, for example when merging the resultwith the original DataFrame
:
- In [86]: dummies = pd.get_dummies(df['key'], prefix='key')
- In [87]: dummies
- Out[87]:
- key_a key_b key_c
- 0 0 1 0
- 1 0 1 0
- 2 1 0 0
- 3 0 0 1
- 4 1 0 0
- 5 0 1 0
- In [88]: df[['data1']].join(dummies)
- Out[88]:
- data1 key_a key_b key_c
- 0 0 0 1 0
- 1 1 0 1 0
- 2 2 1 0 0
- 3 3 0 0 1
- 4 4 1 0 0
- 5 5 0 1 0
This function is often used along with discretization functions like cut
:
- In [89]: values = np.random.randn(10)
- In [90]: values
- Out[90]:
- array([ 0.4082, -1.0481, -0.0257, -0.9884, 0.0941, 1.2627, 1.29 ,
- 0.0824, -0.0558, 0.5366])
- In [91]: bins = [0, 0.2, 0.4, 0.6, 0.8, 1]
- In [92]: pd.get_dummies(pd.cut(values, bins))
- Out[92]:
- (0.0, 0.2] (0.2, 0.4] (0.4, 0.6] (0.6, 0.8] (0.8, 1.0]
- 0 0 0 1 0 0
- 1 0 0 0 0 0
- 2 0 0 0 0 0
- 3 0 0 0 0 0
- 4 1 0 0 0 0
- 5 0 0 0 0 0
- 6 0 0 0 0 0
- 7 1 0 0 0 0
- 8 0 0 0 0 0
- 9 0 0 1 0 0
See also Series.str.get_dummies
.
get_dummies()
also accepts a DataFrame
. By default all categoricalvariables (categorical in the statistical sense, those with object orcategorical dtype) are encoded as dummy variables.
- In [93]: df = pd.DataFrame({'A': ['a', 'b', 'a'], 'B': ['c', 'c', 'b'],
- ....: 'C': [1, 2, 3]})
- ....:
- In [94]: pd.get_dummies(df)
- Out[94]:
- C A_a A_b B_b B_c
- 0 1 1 0 0 1
- 1 2 0 1 0 1
- 2 3 1 0 1 0
All non-object columns are included untouched in the output. You can controlthe columns that are encoded with the columns
keyword.
- In [95]: pd.get_dummies(df, columns=['A'])
- Out[95]:
- B C A_a A_b
- 0 c 1 1 0
- 1 c 2 0 1
- 2 b 3 1 0
Notice that the B
column is still included in the output, it just hasn’tbeen encoded. You can drop B
before calling get_dummies
if you don’twant to include it in the output.
As with the Series
version, you can pass values for the prefix
andprefixsep
. By default the column name is used as the prefix, and ‘’ asthe prefix separator. You can specify prefix
and prefix_sep
in 3 ways:
- string: Use the same value for
prefix
orprefix_sep
for each columnto be encoded. - list: Must be the same length as the number of columns being encoded.
- dict: Mapping column name to prefix.
- In [96]: simple = pd.get_dummies(df, prefix='new_prefix')
- In [97]: simple
- Out[97]:
- C new_prefix_a new_prefix_b new_prefix_b new_prefix_c
- 0 1 1 0 0 1
- 1 2 0 1 0 1
- 2 3 1 0 1 0
- In [98]: from_list = pd.get_dummies(df, prefix=['from_A', 'from_B'])
- In [99]: from_list
- Out[99]:
- C from_A_a from_A_b from_B_b from_B_c
- 0 1 1 0 0 1
- 1 2 0 1 0 1
- 2 3 1 0 1 0
- In [100]: from_dict = pd.get_dummies(df, prefix={'B': 'from_B', 'A': 'from_A'})
- In [101]: from_dict
- Out[101]:
- C from_A_a from_A_b from_B_b from_B_c
- 0 1 1 0 0 1
- 1 2 0 1 0 1
- 2 3 1 0 1 0
New in version 0.18.0.
Sometimes it will be useful to only keep k-1 levels of a categoricalvariable to avoid collinearity when feeding the result to statistical models.You can switch to this mode by turn on drop_first
.
- In [102]: s = pd.Series(list('abcaa'))
- In [103]: pd.get_dummies(s)
- Out[103]:
- a b c
- 0 1 0 0
- 1 0 1 0
- 2 0 0 1
- 3 1 0 0
- 4 1 0 0
- In [104]: pd.get_dummies(s, drop_first=True)
- Out[104]:
- b c
- 0 0 0
- 1 1 0
- 2 0 1
- 3 0 0
- 4 0 0
When a column contains only one level, it will be omitted in the result.
- In [105]: df = pd.DataFrame({'A': list('aaaaa'), 'B': list('ababc')})
- In [106]: pd.get_dummies(df)
- Out[106]:
- A_a B_a B_b B_c
- 0 1 1 0 0
- 1 1 0 1 0
- 2 1 1 0 0
- 3 1 0 1 0
- 4 1 0 0 1
- In [107]: pd.get_dummies(df, drop_first=True)
- Out[107]:
- B_b B_c
- 0 0 0
- 1 1 0
- 2 0 0
- 3 1 0
- 4 0 1
By default new columns will have np.uint8
dtype.To choose another dtype, use the dtype
argument:
- In [108]: df = pd.DataFrame({'A': list('abc'), 'B': [1.1, 2.2, 3.3]})
- In [109]: pd.get_dummies(df, dtype=bool).dtypes
- Out[109]:
- B float64
- A_a bool
- A_b bool
- A_c bool
- dtype: object
New in version 0.23.0.
Factorizing values
To encode 1-d values as an enumerated type use factorize()
:
- In [110]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
- In [111]: x
- Out[111]:
- 0 A
- 1 A
- 2 NaN
- 3 B
- 4 3.14
- 5 inf
- dtype: object
- In [112]: labels, uniques = pd.factorize(x)
- In [113]: labels
- Out[113]: array([ 0, 0, -1, 1, 2, 3])
- In [114]: uniques
- Out[114]: Index(['A', 'B', 3.14, inf], dtype='object')
Note that factorize
is similar to numpy.unique
, but differs in itshandling of NaN:
Note
The following numpy.unique
will fail under Python 3 with a TypeError
because of an ordering bug. See alsohere.
- In [1]: x = pd.Series(['A', 'A', np.nan, 'B', 3.14, np.inf])
- In [2]: pd.factorize(x, sort=True)
- Out[2]:
- (array([ 2, 2, -1, 3, 0, 1]),
- Index([3.14, inf, 'A', 'B'], dtype='object'))
- In [3]: np.unique(x, return_inverse=True)[::-1]
- Out[3]: (array([3, 3, 0, 4, 1, 2]), array([nan, 3.14, inf, 'A', 'B'], dtype=object))
Note
If you just want to handle one column as a categorical variable (like R’s factor),you can use df["cat_col"] = pd.Categorical(df["col"])
ordf["cat_col"] = df["col"].astype("category")
. For full docs on Categorical
,see the Categorical introduction and theAPI documentation.
Examples
In this section, we will review frequently asked questions and examples. Thecolumn names and relevant column values are named to correspond with how thisDataFrame will be pivoted in the answers below.
- In [115]: np.random.seed([3, 1415])
- In [116]: n = 20
- In [117]: cols = np.array(['key', 'row', 'item', 'col'])
- In [118]: df = cols + pd.DataFrame((np.random.randint(5, size=(n, 4))
- .....: // [2, 1, 2, 1]).astype(str))
- .....:
- In [119]: df.columns = cols
- In [120]: df = df.join(pd.DataFrame(np.random.rand(n, 2).round(2)).add_prefix('val'))
- In [121]: df
- Out[121]:
- key row item col val0 val1
- 0 key0 row3 item1 col3 0.81 0.04
- 1 key1 row2 item1 col2 0.44 0.07
- 2 key1 row0 item1 col0 0.77 0.01
- 3 key0 row4 item0 col2 0.15 0.59
- 4 key1 row0 item2 col1 0.81 0.64
- .. ... ... ... ... ... ...
- 15 key0 row3 item1 col1 0.31 0.23
- 16 key0 row0 item2 col3 0.86 0.01
- 17 key0 row4 item0 col3 0.64 0.21
- 18 key2 row2 item2 col0 0.13 0.45
- 19 key0 row2 item0 col4 0.37 0.70
- [20 rows x 6 columns]
Pivoting with single aggregations
Suppose we wanted to pivot df
such that the col
values are columns,row
values are the index, and the mean of val0
are the values? Inparticular, the resulting DataFrame should look like:
Note
col col0 col1 col2 col3 col4rowrow0 0.77 0.605 NaN 0.860 0.65row2 0.13 NaN 0.395 0.500 0.25row3 NaN 0.310 NaN 0.545 NaNrow4 NaN 0.100 0.395 0.760 0.24
This solution uses pivot_table()
. Also note thataggfunc='mean'
is the default. It is included here to be explicit.
- In [122]: df.pivot_table(
- .....: values='val0', index='row', columns='col', aggfunc='mean')
- .....:
- Out[122]:
- col col0 col1 col2 col3 col4
- row
- row0 0.77 0.605 NaN 0.860 0.65
- row2 0.13 NaN 0.395 0.500 0.25
- row3 NaN 0.310 NaN 0.545 NaN
- row4 NaN 0.100 0.395 0.760 0.24
Note that we can also replace the missing values by using the fill_value
parameter.
- In [123]: df.pivot_table(
- .....: values='val0', index='row', columns='col', aggfunc='mean', fill_value=0)
- .....:
- Out[123]:
- col col0 col1 col2 col3 col4
- row
- row0 0.77 0.605 0.000 0.860 0.65
- row2 0.13 0.000 0.395 0.500 0.25
- row3 0.00 0.310 0.000 0.545 0.00
- row4 0.00 0.100 0.395 0.760 0.24
Also note that we can pass in other aggregation functions as well. For example,we can also pass in sum
.
- In [124]: df.pivot_table(
- .....: values='val0', index='row', columns='col', aggfunc='sum', fill_value=0)
- .....:
- Out[124]:
- col col0 col1 col2 col3 col4
- row
- row0 0.77 1.21 0.00 0.86 0.65
- row2 0.13 0.00 0.79 0.50 0.50
- row3 0.00 0.31 0.00 1.09 0.00
- row4 0.00 0.10 0.79 1.52 0.24
Another aggregation we can do is calculate the frequency in which the columnsand rows occur together a.k.a. “cross tabulation”. To do this, we can passsize
to the aggfunc
parameter.
- In [125]: df.pivot_table(index='row', columns='col', fill_value=0, aggfunc='size')
- Out[125]:
- col col0 col1 col2 col3 col4
- row
- row0 1 2 0 1 1
- row2 1 0 2 1 2
- row3 0 1 0 2 0
- row4 0 1 2 2 1
Pivoting with multiple aggregations
We can also perform multiple aggregations. For example, to perform both asum
and mean
, we can pass in a list to the aggfunc
argument.
- In [126]: df.pivot_table(
- .....: values='val0', index='row', columns='col', aggfunc=['mean', 'sum'])
- .....:
- Out[126]:
- mean sum
- col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
- row
- row0 0.77 0.605 NaN 0.860 0.65 0.77 1.21 NaN 0.86 0.65
- row2 0.13 NaN 0.395 0.500 0.25 0.13 NaN 0.79 0.50 0.50
- row3 NaN 0.310 NaN 0.545 NaN NaN 0.31 NaN 1.09 NaN
- row4 NaN 0.100 0.395 0.760 0.24 NaN 0.10 0.79 1.52 0.24
Note to aggregate over multiple value columns, we can pass in a list to thevalues
parameter.
- In [127]: df.pivot_table(
- .....: values=['val0', 'val1'], index='row', columns='col', aggfunc=['mean'])
- .....:
- Out[127]:
- mean
- val0 val1
- col col0 col1 col2 col3 col4 col0 col1 col2 col3 col4
- row
- row0 0.77 0.605 NaN 0.860 0.65 0.01 0.745 NaN 0.010 0.02
- row2 0.13 NaN 0.395 0.500 0.25 0.45 NaN 0.34 0.440 0.79
- row3 NaN 0.310 NaN 0.545 NaN NaN 0.230 NaN 0.075 NaN
- row4 NaN 0.100 0.395 0.760 0.24 NaN 0.070 0.42 0.300 0.46
Note to subdivide over multiple columns we can pass in a list to thecolumns
parameter.
- In [128]: df.pivot_table(
- .....: values=['val0'], index='row', columns=['item', 'col'], aggfunc=['mean'])
- .....:
- Out[128]:
- mean
- val0
- item item0 item1 item2
- col col2 col3 col4 col0 col1 col2 col3 col4 col0 col1 col3 col4
- row
- row0 NaN NaN NaN 0.77 NaN NaN NaN NaN NaN 0.605 0.86 0.65
- row2 0.35 NaN 0.37 NaN NaN 0.44 NaN NaN 0.13 NaN 0.50 0.13
- row3 NaN NaN NaN NaN 0.31 NaN 0.81 NaN NaN NaN 0.28 NaN
- row4 0.15 0.64 NaN NaN 0.10 0.64 0.88 0.24 NaN NaN NaN NaN
Exploding a list-like column
New in version 0.25.0.
Sometimes the values in a column are list-like.
- In [129]: keys = ['panda1', 'panda2', 'panda3']
- In [130]: values = [['eats', 'shoots'], ['shoots', 'leaves'], ['eats', 'leaves']]
- In [131]: df = pd.DataFrame({'keys': keys, 'values': values})
- In [132]: df
- Out[132]:
- keys values
- 0 panda1 [eats, shoots]
- 1 panda2 [shoots, leaves]
- 2 panda3 [eats, leaves]
We can ‘explode’ the values
column, transforming each list-like to a separate row, by using explode()
. This will replicate the index values from the original row:
- In [133]: df['values'].explode()
- Out[133]:
- 0 eats
- 0 shoots
- 1 shoots
- 1 leaves
- 2 eats
- 2 leaves
- Name: values, dtype: object
You can also explode the column in the DataFrame
.
- In [134]: df.explode('values')
- Out[134]:
- keys values
- 0 panda1 eats
- 0 panda1 shoots
- 1 panda2 shoots
- 1 panda2 leaves
- 2 panda3 eats
- 2 panda3 leaves
Series.explode()
will replace empty lists with np.nan
and preserve scalar entries. The dtype of the resulting Series
is always object
.
- In [135]: s = pd.Series([[1, 2, 3], 'foo', [], ['a', 'b']])
- In [136]: s
- Out[136]:
- 0 [1, 2, 3]
- 1 foo
- 2 []
- 3 [a, b]
- dtype: object
- In [137]: s.explode()
- Out[137]:
- 0 1
- 0 2
- 0 3
- 1 foo
- 2 NaN
- 3 a
- 3 b
- dtype: object
Here is a typical usecase. You have comma separated strings in a column and want to expand this.
- In [138]: df = pd.DataFrame([{'var1': 'a,b,c', 'var2': 1},
- .....: {'var1': 'd,e,f', 'var2': 2}])
- .....:
- In [139]: df
- Out[139]:
- var1 var2
- 0 a,b,c 1
- 1 d,e,f 2
Creating a long form DataFrame is now straightforward using explode and chained operations
- In [140]: df.assign(var1=df.var1.str.split(',')).explode('var1')
- Out[140]:
- var1 var2
- 0 a 1
- 0 b 1
- 0 c 1
- 1 d 2
- 1 e 2
- 1 f 2