General functions
Data manipulations
melt (frame[, id_vars, value_vars, var_name, …]) | Unpivot a DataFrame from wide format to long format, optionally leaving identifier variables set. |
pivot (data[, index, columns, values]) | Return reshaped DataFrame organized by given index / column values. |
pivot_table (data[, values, index, columns, …]) | Create a spreadsheet-style pivot table as a DataFrame. |
crosstab (index, columns[, values, rownames, …]) | Compute a simple cross tabulation of two (or more) factors. |
cut (x, bins[, right, labels, retbins, …]) | Bin values into discrete intervals. |
qcut (x, q[, labels, retbins, precision, …]) | Quantile-based discretization function. |
merge (left, right[, how, on, left_on, …]) | Merge DataFrame or named Series objects with a database-style join. |
merge_ordered (left, right[, on, left_on, …]) | Perform merge with optional filling/interpolation designed for ordered data like time series data. |
merge_asof (left, right[, on, left_on, …]) | Perform an asof merge. |
concat (objs[, axis, join, join_axes, …]) | Concatenate pandas objects along a particular axis with optional set logic along the other axes. |
get_dummies (data[, prefix, prefix_sep, …]) | Convert categorical variable into dummy/indicator variables. |
factorize (values[, sort, order, …]) | Encode the object as an enumerated type or categorical variable. |
unique (values) | Hash table-based unique. |
wide_to_long (df, stubnames, i, j[, sep, suffix]) | Wide panel to long format. |
Top-level missing data
isna (obj) | Detect missing values for an array-like object. |
isnull (obj) | Detect missing values for an array-like object. |
notna (obj) | Detect non-missing values for an array-like object. |
notnull (obj) | Detect non-missing values for an array-like object. |
Top-level conversions
to_numeric (arg[, errors, downcast]) | Convert argument to a numeric type. |
Top-level dealing with datetimelike
to_datetime (arg[, errors, dayfirst, …]) | Convert argument to datetime. |
to_timedelta (arg[, unit, box, errors]) | Convert argument to timedelta. |
date_range ([start, end, periods, freq, tz, …]) | Return a fixed frequency DatetimeIndex. |
bdate_range ([start, end, periods, freq, tz, …]) | Return a fixed frequency DatetimeIndex, with business day as the default frequency |
period_range ([start, end, periods, freq, name]) | Return a fixed frequency PeriodIndex, with day (calendar) as the default frequency |
timedelta_range ([start, end, periods, freq, …]) | Return a fixed frequency TimedeltaIndex, with day as the default frequency |
infer_freq (index[, warn]) | Infer the most likely frequency given the input index. |
Top-level dealing with intervals
interval_range ([start, end, periods, freq, …]) | Return a fixed frequency IntervalIndex |
Top-level evaluation
eval (expr[, parser, engine, truediv, …]) | Evaluate a Python expression as a string using various backends. |
Hashing
util.hash_array (vals[, encoding, hash_key, …]) | Given a 1d array, return an array of deterministic integers. |
util.hash_pandas_object (obj[, index, …]) | Return a data hash of the Index/Series/DataFrame |
Testing
test ([extra_args]) |