- Indexing and selecting data
- Different choices for indexing
- Basics
- Attribute access
- Slicing ranges
- Selection by label
- Selection by position
- Selection by callable
- IX indexer is deprecated
- Indexing with list with missing labels is deprecated
- Selecting random samples
- Setting with enlargement
- Fast scalar value getting and setting
- Boolean indexing
- Indexing with isin
- The where() Method and Masking
- The query() Method
- Duplicate data
- Dictionary-like get() method
- The lookup() method
- Index objects
- Set / reset index
- Returning a view versus a copy
Indexing and selecting data
The axis labeling information in pandas objects serves many purposes:
- Identifies data (i.e. provides metadata) using known indicators,important for analysis, visualization, and interactive console display.
- Enables automatic and explicit data alignment.
- Allows intuitive getting and setting of subsets of the data set.
In this section, we will focus on the final point: namely, how to slice, dice,and generally get and set subsets of pandas objects. The primary focus will beon Series and DataFrame as they have received more development attention inthis area.
Note
The Python and NumPy indexing operators []
and attribute operator .
provide quick and easy access to pandas data structures across a wide rangeof use cases. This makes interactive work intuitive, as there’s little newto learn if you already know how to deal with Python dictionaries and NumPyarrays. However, since the type of the data to be accessed isn’t known inadvance, directly using standard operators has some optimization limits. Forproduction code, we recommended that you take advantage of the optimizedpandas data access methods exposed in this chapter.
Warning
Whether a copy or a reference is returned for a setting operation, maydepend on the context. This is sometimes called chained assignment
andshould be avoided. See Returning a View versus Copy.
Warning
Indexing on an integer-based Index with floats has been clarified in 0.18.0, for a summary of the changes, see here.
See the MultiIndex / Advanced Indexing for MultiIndex
and more advanced indexing documentation.
See the cookbook for some advanced strategies.
Different choices for indexing
Object selection has had a number of user-requested additions in order tosupport more explicit location based indexing. Pandas now supports three typesof multi-axis indexing.
.loc
is primarily label based, but may also be used with a boolean array..loc
will raiseKeyError
when the items are not found. Allowed inputs are:
A single label, e.g.
5
or'a'
(Note that5
is interpreted as alabel of the index. This use is not an integer position along theindex.).A list or array of labels
['a', 'b', 'c']
.A slice object with labels
'a':'f'
(Note that contrary to usual pythonslices, both the start and the stop are included, when present in theindex! See Slicing with labelsand Endpoints are inclusive.)A boolean array
A
callable
function with one argument (the calling Series or DataFrame) andthat returns valid output for indexing (one of the above).New in version 0.18.1.
See more at Selection by Label.
.iloc
is primarily integer position based (from0
tolength-1
of the axis), but may also be used with a booleanarray..iloc
will raiseIndexError
if a requestedindexer is out-of-bounds, except slice indexers which allowout-of-bounds indexing. (this conforms with Python/NumPy _slice_semantics). Allowed inputs are:
An integer e.g.
5
.A list or array of integers
[4, 3, 0]
.A slice object with ints
1:7
.A boolean array.
A
callable
function with one argument (the calling Series or DataFrame) andthat returns valid output for indexing (one of the above).New in version 0.18.1.
See more at Selection by Position,Advanced Indexing and AdvancedHierarchical.
.loc
,.iloc
, and also[]
indexing can accept acallable
as indexer. See more at Selection By Callable.
Getting values from an object with multi-axes selection uses the followingnotation (using .loc
as an example, but the following applies to .iloc
aswell). Any of the axes accessors may be the null slice :
. Axes left out ofthe specification are assumed to be :
, e.g. p.loc['a']
is equivalent top.loc['a', :, :]
.
Object Type | Indexers |
---|---|
Series | s.loc[indexer] |
DataFrame | df.loc[row_indexer,column_indexer] |
Basics
As mentioned when introducing the data structures in the last section, the primary function of indexing with []
(a.k.a. getitem
for those familiar with implementing class behavior in Python) is selecting outlower-dimensional slices. The following table shows return type values whenindexing pandas objects with []
:
Object Type | Selection | Return Value Type |
---|---|---|
Series | series[label] | scalar value |
DataFrame | frame[colname] | Series corresponding to colname |
Here we construct a simple time series data set to use for illustrating theindexing functionality:
- In [1]: dates = pd.date_range('1/1/2000', periods=8)
- In [2]: df = pd.DataFrame(np.random.randn(8, 4),
- ...: index=dates, columns=['A', 'B', 'C', 'D'])
- ...:
- In [3]: df
- Out[3]:
- A B C D
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
- 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
- 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
- 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
Note
None of the indexing functionality is time series specific unlessspecifically stated.
Thus, as per above, we have the most basic indexing using []
:
- In [4]: s = df['A']
- In [5]: s[dates[5]]
- Out[5]: -0.6736897080883706
You can pass a list of columns to []
to select columns in that order.If a column is not contained in the DataFrame, an exception will beraised. Multiple columns can also be set in this manner:
- In [6]: df
- Out[6]:
- A B C D
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
- 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
- 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
- 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
- In [7]: df[['B', 'A']] = df[['A', 'B']]
- In [8]: df
- Out[8]:
- A B C D
- 2000-01-01 -0.282863 0.469112 -1.509059 -1.135632
- 2000-01-02 -0.173215 1.212112 0.119209 -1.044236
- 2000-01-03 -2.104569 -0.861849 -0.494929 1.071804
- 2000-01-04 -0.706771 0.721555 -1.039575 0.271860
- 2000-01-05 0.567020 -0.424972 0.276232 -1.087401
- 2000-01-06 0.113648 -0.673690 -1.478427 0.524988
- 2000-01-07 0.577046 0.404705 -1.715002 -1.039268
- 2000-01-08 -1.157892 -0.370647 -1.344312 0.844885
You may find this useful for applying a transform (in-place) to a subset of thecolumns.
Warning
pandas aligns all AXES when setting Series
and DataFrame
from .loc
, and .iloc
.
This will not modify df
because the column alignment is before value assignment.
- In [9]: df[['A', 'B']]
- Out[9]:
- A B
- 2000-01-01 -0.282863 0.469112
- 2000-01-02 -0.173215 1.212112
- 2000-01-03 -2.104569 -0.861849
- 2000-01-04 -0.706771 0.721555
- 2000-01-05 0.567020 -0.424972
- 2000-01-06 0.113648 -0.673690
- 2000-01-07 0.577046 0.404705
- 2000-01-08 -1.157892 -0.370647
- In [10]: df.loc[:, ['B', 'A']] = df[['A', 'B']]
- In [11]: df[['A', 'B']]
- Out[11]:
- A B
- 2000-01-01 -0.282863 0.469112
- 2000-01-02 -0.173215 1.212112
- 2000-01-03 -2.104569 -0.861849
- 2000-01-04 -0.706771 0.721555
- 2000-01-05 0.567020 -0.424972
- 2000-01-06 0.113648 -0.673690
- 2000-01-07 0.577046 0.404705
- 2000-01-08 -1.157892 -0.370647
The correct way to swap column values is by using raw values:
- In [12]: df.loc[:, ['B', 'A']] = df[['A', 'B']].to_numpy()
- In [13]: df[['A', 'B']]
- Out[13]:
- A B
- 2000-01-01 0.469112 -0.282863
- 2000-01-02 1.212112 -0.173215
- 2000-01-03 -0.861849 -2.104569
- 2000-01-04 0.721555 -0.706771
- 2000-01-05 -0.424972 0.567020
- 2000-01-06 -0.673690 0.113648
- 2000-01-07 0.404705 0.577046
- 2000-01-08 -0.370647 -1.157892
Attribute access
You may access an index on a Series
or column on a DataFrame
directlyas an attribute:
- In [14]: sa = pd.Series([1, 2, 3], index=list('abc'))
- In [15]: dfa = df.copy()
- In [16]: sa.b
- Out[16]: 2
- In [17]: dfa.A
- Out[17]:
- 2000-01-01 0.469112
- 2000-01-02 1.212112
- 2000-01-03 -0.861849
- 2000-01-04 0.721555
- 2000-01-05 -0.424972
- 2000-01-06 -0.673690
- 2000-01-07 0.404705
- 2000-01-08 -0.370647
- Freq: D, Name: A, dtype: float64
- In [18]: sa.a = 5
- In [19]: sa
- Out[19]:
- a 5
- b 2
- c 3
- dtype: int64
- In [20]: dfa.A = list(range(len(dfa.index))) # ok if A already exists
- In [21]: dfa
- Out[21]:
- A B C D
- 2000-01-01 0 -0.282863 -1.509059 -1.135632
- 2000-01-02 1 -0.173215 0.119209 -1.044236
- 2000-01-03 2 -2.104569 -0.494929 1.071804
- 2000-01-04 3 -0.706771 -1.039575 0.271860
- 2000-01-05 4 0.567020 0.276232 -1.087401
- 2000-01-06 5 0.113648 -1.478427 0.524988
- 2000-01-07 6 0.577046 -1.715002 -1.039268
- 2000-01-08 7 -1.157892 -1.344312 0.844885
- In [22]: dfa['A'] = list(range(len(dfa.index))) # use this form to create a new column
- In [23]: dfa
- Out[23]:
- A B C D
- 2000-01-01 0 -0.282863 -1.509059 -1.135632
- 2000-01-02 1 -0.173215 0.119209 -1.044236
- 2000-01-03 2 -2.104569 -0.494929 1.071804
- 2000-01-04 3 -0.706771 -1.039575 0.271860
- 2000-01-05 4 0.567020 0.276232 -1.087401
- 2000-01-06 5 0.113648 -1.478427 0.524988
- 2000-01-07 6 0.577046 -1.715002 -1.039268
- 2000-01-08 7 -1.157892 -1.344312 0.844885
Warning
- You can use this access only if the index element is a valid Python identifier, e.g.
s.1
is not allowed.See here for an explanation of valid identifiers. - The attribute will not be available if it conflicts with an existing method name, e.g.
s.min
is not allowed. - Similarly, the attribute will not be available if it conflicts with any of the following list:
index
,major_axis
,minor_axis
,items
. - In any of these cases, standard indexing will still work, e.g.
s['1']
,s['min']
, ands['index']
willaccess the corresponding element or column.
If you are using the IPython environment, you may also use tab-completion tosee these accessible attributes.
You can also assign a dict
to a row of a DataFrame
:
- In [24]: x = pd.DataFrame({'x': [1, 2, 3], 'y': [3, 4, 5]})
- In [25]: x.iloc[1] = {'x': 9, 'y': 99}
- In [26]: x
- Out[26]:
- x y
- 0 1 3
- 1 9 99
- 2 3 5
You can use attribute access to modify an existing element of a Series or column of a DataFrame, but be careful;if you try to use attribute access to create a new column, it creates a new attribute rather than anew column. In 0.21.0 and later, this will raise a UserWarning
:
- In [1]: df = pd.DataFrame({'one': [1., 2., 3.]})
- In [2]: df.two = [4, 5, 6]
- UserWarning: Pandas doesn't allow Series to be assigned into nonexistent columns - see https://pandas.pydata.org/pandas-docs/stable/indexing.html#attribute_access
- In [3]: df
- Out[3]:
- one
- 0 1.0
- 1 2.0
- 2 3.0
Slicing ranges
The most robust and consistent way of slicing ranges along arbitrary axes isdescribed in the Selection by Position sectiondetailing the .iloc
method. For now, we explain the semantics of slicing using the []
operator.
With Series, the syntax works exactly as with an ndarray, returning a slice ofthe values and the corresponding labels:
- In [27]: s[:5]
- Out[27]:
- 2000-01-01 0.469112
- 2000-01-02 1.212112
- 2000-01-03 -0.861849
- 2000-01-04 0.721555
- 2000-01-05 -0.424972
- Freq: D, Name: A, dtype: float64
- In [28]: s[::2]
- Out[28]:
- 2000-01-01 0.469112
- 2000-01-03 -0.861849
- 2000-01-05 -0.424972
- 2000-01-07 0.404705
- Freq: 2D, Name: A, dtype: float64
- In [29]: s[::-1]
- Out[29]:
- 2000-01-08 -0.370647
- 2000-01-07 0.404705
- 2000-01-06 -0.673690
- 2000-01-05 -0.424972
- 2000-01-04 0.721555
- 2000-01-03 -0.861849
- 2000-01-02 1.212112
- 2000-01-01 0.469112
- Freq: -1D, Name: A, dtype: float64
Note that setting works as well:
- In [30]: s2 = s.copy()
- In [31]: s2[:5] = 0
- In [32]: s2
- Out[32]:
- 2000-01-01 0.000000
- 2000-01-02 0.000000
- 2000-01-03 0.000000
- 2000-01-04 0.000000
- 2000-01-05 0.000000
- 2000-01-06 -0.673690
- 2000-01-07 0.404705
- 2000-01-08 -0.370647
- Freq: D, Name: A, dtype: float64
With DataFrame, slicing inside of []
slices the rows. This is providedlargely as a convenience since it is such a common operation.
- In [33]: df[:3]
- Out[33]:
- A B C D
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
- In [34]: df[::-1]
- Out[34]:
- A B C D
- 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885
- 2000-01-07 0.404705 0.577046 -1.715002 -1.039268
- 2000-01-06 -0.673690 0.113648 -1.478427 0.524988
- 2000-01-05 -0.424972 0.567020 0.276232 -1.087401
- 2000-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632
Selection by label
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context.This is sometimes called chained assignment
and should be avoided.See Returning a View versus Copy.
Warning
.loc
is strict when you present slicers that are not compatible (or convertible) with the index type. For exampleusing integers in aDatetimeIndex
. These will raise aTypeError
.
- In [35]: dfl = pd.DataFrame(np.random.randn(5, 4),
- ....: columns=list('ABCD'),
- ....: index=pd.date_range('20130101', periods=5))
- ....:
- In [36]: dfl
- Out[36]:
- A B C D
- 2013-01-01 1.075770 -0.109050 1.643563 -1.469388
- 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
- 2013-01-03 -1.294524 0.413738 0.276662 -0.472035
- 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
- 2013-01-05 0.895717 0.805244 -1.206412 2.565646
- In [4]: dfl.loc[2:3]
- TypeError: cannot do slice indexing on <class 'pandas.tseries.index.DatetimeIndex'> with these indexers [2] of <type 'int'>
String likes in slicing can be convertible to the type of the index and lead to natural slicing.
- In [37]: dfl.loc['20130102':'20130104']
- Out[37]:
- A B C D
- 2013-01-02 0.357021 -0.674600 -1.776904 -0.968914
- 2013-01-03 -1.294524 0.413738 0.276662 -0.472035
- 2013-01-04 -0.013960 -0.362543 -0.006154 -0.923061
Warning
Starting in 0.21.0, pandas will show a FutureWarning
if indexing with a list with missing labels. In the futurethis will raise a KeyError
. See list-like Using loc with missing keys in a list is Deprecated.
pandas provides a suite of methods in order to have purely label based indexing. This is a strict inclusion based protocol.Every label asked for must be in the index, or a KeyError
will be raised.When slicing, both the start bound AND the stop bound are included, if present in the index.Integers are valid labels, but they refer to the label and not the position.
The .loc
attribute is the primary access method. The following are valid inputs:
- A single label, e.g.
5
or'a'
(Note that5
is interpreted as a label of the index. This use is not an integer position along the index.). - A list or array of labels
['a', 'b', 'c']
. - A slice object with labels
'a':'f'
(Note that contrary to usual pythonslices, both the start and the stop are included, when present in theindex! See Slicing with labels. - A boolean array.
- A
callable
, see Selection By Callable.
- In [38]: s1 = pd.Series(np.random.randn(6), index=list('abcdef'))
- In [39]: s1
- Out[39]:
- a 1.431256
- b 1.340309
- c -1.170299
- d -0.226169
- e 0.410835
- f 0.813850
- dtype: float64
- In [40]: s1.loc['c':]
- Out[40]:
- c -1.170299
- d -0.226169
- e 0.410835
- f 0.813850
- dtype: float64
- In [41]: s1.loc['b']
- Out[41]: 1.3403088497993827
Note that setting works as well:
- In [42]: s1.loc['c':] = 0
- In [43]: s1
- Out[43]:
- a 1.431256
- b 1.340309
- c 0.000000
- d 0.000000
- e 0.000000
- f 0.000000
- dtype: float64
With a DataFrame:
- In [44]: df1 = pd.DataFrame(np.random.randn(6, 4),
- ....: index=list('abcdef'),
- ....: columns=list('ABCD'))
- ....:
- In [45]: df1
- Out[45]:
- A B C D
- a 0.132003 -0.827317 -0.076467 -1.187678
- b 1.130127 -1.436737 -1.413681 1.607920
- c 1.024180 0.569605 0.875906 -2.211372
- d 0.974466 -2.006747 -0.410001 -0.078638
- e 0.545952 -1.219217 -1.226825 0.769804
- f -1.281247 -0.727707 -0.121306 -0.097883
- In [46]: df1.loc[['a', 'b', 'd'], :]
- Out[46]:
- A B C D
- a 0.132003 -0.827317 -0.076467 -1.187678
- b 1.130127 -1.436737 -1.413681 1.607920
- d 0.974466 -2.006747 -0.410001 -0.078638
Accessing via label slices:
- In [47]: df1.loc['d':, 'A':'C']
- Out[47]:
- A B C
- d 0.974466 -2.006747 -0.410001
- e 0.545952 -1.219217 -1.226825
- f -1.281247 -0.727707 -0.121306
For getting a cross section using a label (equivalent to df.xs('a')
):
- In [48]: df1.loc['a']
- Out[48]:
- A 0.132003
- B -0.827317
- C -0.076467
- D -1.187678
- Name: a, dtype: float64
For getting values with a boolean array:
- In [49]: df1.loc['a'] > 0
- Out[49]:
- A True
- B False
- C False
- D False
- Name: a, dtype: bool
- In [50]: df1.loc[:, df1.loc['a'] > 0]
- Out[50]:
- A
- a 0.132003
- b 1.130127
- c 1.024180
- d 0.974466
- e 0.545952
- f -1.281247
For getting a value explicitly (equivalent to deprecated df.get_value('a','A')
):
- # this is also equivalent to ``df1.at['a','A']``
- In [51]: df1.loc['a', 'A']
- Out[51]: 0.13200317033032932
Slicing with labels
When using .loc
with slices, if both the start and the stop labels arepresent in the index, then elements located between the two (including them)are returned:
- In [52]: s = pd.Series(list('abcde'), index=[0, 3, 2, 5, 4])
- In [53]: s.loc[3:5]
- Out[53]:
- 3 b
- 2 c
- 5 d
- dtype: object
If at least one of the two is absent, but the index is sorted, and can becompared against start and stop labels, then slicing will still work asexpected, by selecting labels which rank between the two:
- In [54]: s.sort_index()
- Out[54]:
- 0 a
- 2 c
- 3 b
- 4 e
- 5 d
- dtype: object
- In [55]: s.sort_index().loc[1:6]
- Out[55]:
- 2 c
- 3 b
- 4 e
- 5 d
- dtype: object
However, if at least one of the two is absent and the index is not sorted, anerror will be raised (since doing otherwise would be computationally expensive,as well as potentially ambiguous for mixed type indexes). For instance, in theabove example, s.loc[1:6]
would raise KeyError
.
For the rationale behind this behavior, seeEndpoints are inclusive.
Selection by position
Warning
Whether a copy or a reference is returned for a setting operation, may depend on the context.This is sometimes called chained assignment
and should be avoided.See Returning a View versus Copy.
Pandas provides a suite of methods in order to get purely integer based indexing. The semantics follow closely Python and NumPy slicing. These are 0-based
indexing. When slicing, the start bound is included, while the upper bound is excluded. Trying to use a non-integer, even a valid label will raise an IndexError
.
The .iloc
attribute is the primary access method. The following are valid inputs:
- An integer e.g.
5
. - A list or array of integers
[4, 3, 0]
. - A slice object with ints
1:7
. - A boolean array.
- A
callable
, see Selection By Callable.
- In [56]: s1 = pd.Series(np.random.randn(5), index=list(range(0, 10, 2)))
- In [57]: s1
- Out[57]:
- 0 0.695775
- 2 0.341734
- 4 0.959726
- 6 -1.110336
- 8 -0.619976
- dtype: float64
- In [58]: s1.iloc[:3]
- Out[58]:
- 0 0.695775
- 2 0.341734
- 4 0.959726
- dtype: float64
- In [59]: s1.iloc[3]
- Out[59]: -1.110336102891167
Note that setting works as well:
- In [60]: s1.iloc[:3] = 0
- In [61]: s1
- Out[61]:
- 0 0.000000
- 2 0.000000
- 4 0.000000
- 6 -1.110336
- 8 -0.619976
- dtype: float64
With a DataFrame:
- In [62]: df1 = pd.DataFrame(np.random.randn(6, 4),
- ....: index=list(range(0, 12, 2)),
- ....: columns=list(range(0, 8, 2)))
- ....:
- In [63]: df1
- Out[63]:
- 0 2 4 6
- 0 0.149748 -0.732339 0.687738 0.176444
- 2 0.403310 -0.154951 0.301624 -2.179861
- 4 -1.369849 -0.954208 1.462696 -1.743161
- 6 -0.826591 -0.345352 1.314232 0.690579
- 8 0.995761 2.396780 0.014871 3.357427
- 10 -0.317441 -1.236269 0.896171 -0.487602
Select via integer slicing:
- In [64]: df1.iloc[:3]
- Out[64]:
- 0 2 4 6
- 0 0.149748 -0.732339 0.687738 0.176444
- 2 0.403310 -0.154951 0.301624 -2.179861
- 4 -1.369849 -0.954208 1.462696 -1.743161
- In [65]: df1.iloc[1:5, 2:4]
- Out[65]:
- 4 6
- 2 0.301624 -2.179861
- 4 1.462696 -1.743161
- 6 1.314232 0.690579
- 8 0.014871 3.357427
Select via integer list:
- In [66]: df1.iloc[[1, 3, 5], [1, 3]]
- Out[66]:
- 2 6
- 2 -0.154951 -2.179861
- 6 -0.345352 0.690579
- 10 -1.236269 -0.487602
- In [67]: df1.iloc[1:3, :]
- Out[67]:
- 0 2 4 6
- 2 0.403310 -0.154951 0.301624 -2.179861
- 4 -1.369849 -0.954208 1.462696 -1.743161
- In [68]: df1.iloc[:, 1:3]
- Out[68]:
- 2 4
- 0 -0.732339 0.687738
- 2 -0.154951 0.301624
- 4 -0.954208 1.462696
- 6 -0.345352 1.314232
- 8 2.396780 0.014871
- 10 -1.236269 0.896171
- # this is also equivalent to ``df1.iat[1,1]``
- In [69]: df1.iloc[1, 1]
- Out[69]: -0.1549507744249032
For getting a cross section using an integer position (equiv to df.xs(1)
):
- In [70]: df1.iloc[1]
- Out[70]:
- 0 0.403310
- 2 -0.154951
- 4 0.301624
- 6 -2.179861
- Name: 2, dtype: float64
Out of range slice indexes are handled gracefully just as in Python/Numpy.
- # these are allowed in python/numpy.
- In [71]: x = list('abcdef')
- In [72]: x
- Out[72]: ['a', 'b', 'c', 'd', 'e', 'f']
- In [73]: x[4:10]
- Out[73]: ['e', 'f']
- In [74]: x[8:10]
- Out[74]: []
- In [75]: s = pd.Series(x)
- In [76]: s
- Out[76]:
- 0 a
- 1 b
- 2 c
- 3 d
- 4 e
- 5 f
- dtype: object
- In [77]: s.iloc[4:10]
- Out[77]:
- 4 e
- 5 f
- dtype: object
- In [78]: s.iloc[8:10]
- Out[78]: Series([], dtype: object)
Note that using slices that go out of bounds can result inan empty axis (e.g. an empty DataFrame being returned).
- In [79]: dfl = pd.DataFrame(np.random.randn(5, 2), columns=list('AB'))
- In [80]: dfl
- Out[80]:
- A B
- 0 -0.082240 -2.182937
- 1 0.380396 0.084844
- 2 0.432390 1.519970
- 3 -0.493662 0.600178
- 4 0.274230 0.132885
- In [81]: dfl.iloc[:, 2:3]
- Out[81]:
- Empty DataFrame
- Columns: []
- Index: [0, 1, 2, 3, 4]
- In [82]: dfl.iloc[:, 1:3]
- Out[82]:
- B
- 0 -2.182937
- 1 0.084844
- 2 1.519970
- 3 0.600178
- 4 0.132885
- In [83]: dfl.iloc[4:6]
- Out[83]:
- A B
- 4 0.27423 0.132885
A single indexer that is out of bounds will raise an IndexError
.A list of indexers where any element is out of bounds will raise anIndexError
.
- >>> dfl.iloc[[4, 5, 6]]
- IndexError: positional indexers are out-of-bounds
- >>> dfl.iloc[:, 4]
- IndexError: single positional indexer is out-of-bounds
Selection by callable
New in version 0.18.1.
.loc
, .iloc
, and also []
indexing can accept a callable
as indexer.The callable
must be a function with one argument (the calling Series or DataFrame) that returns valid output for indexing.
- In [84]: df1 = pd.DataFrame(np.random.randn(6, 4),
- ....: index=list('abcdef'),
- ....: columns=list('ABCD'))
- ....:
- In [85]: df1
- Out[85]:
- A B C D
- a -0.023688 2.410179 1.450520 0.206053
- b -0.251905 -2.213588 1.063327 1.266143
- c 0.299368 -0.863838 0.408204 -1.048089
- d -0.025747 -0.988387 0.094055 1.262731
- e 1.289997 0.082423 -0.055758 0.536580
- f -0.489682 0.369374 -0.034571 -2.484478
- In [86]: df1.loc[lambda df: df.A > 0, :]
- Out[86]:
- A B C D
- c 0.299368 -0.863838 0.408204 -1.048089
- e 1.289997 0.082423 -0.055758 0.536580
- In [87]: df1.loc[:, lambda df: ['A', 'B']]
- Out[87]:
- A B
- a -0.023688 2.410179
- b -0.251905 -2.213588
- c 0.299368 -0.863838
- d -0.025747 -0.988387
- e 1.289997 0.082423
- f -0.489682 0.369374
- In [88]: df1.iloc[:, lambda df: [0, 1]]
- Out[88]:
- A B
- a -0.023688 2.410179
- b -0.251905 -2.213588
- c 0.299368 -0.863838
- d -0.025747 -0.988387
- e 1.289997 0.082423
- f -0.489682 0.369374
- In [89]: df1[lambda df: df.columns[0]]
- Out[89]:
- a -0.023688
- b -0.251905
- c 0.299368
- d -0.025747
- e 1.289997
- f -0.489682
- Name: A, dtype: float64
You can use callable indexing in Series
.
- In [90]: df1.A.loc[lambda s: s > 0]
- Out[90]:
- c 0.299368
- e 1.289997
- Name: A, dtype: float64
Using these methods / indexers, you can chain data selection operationswithout using a temporary variable.
- In [91]: bb = pd.read_csv('data/baseball.csv', index_col='id')
- In [92]: (bb.groupby(['year', 'team']).sum()
- ....: .loc[lambda df: df.r > 100])
- ....:
- Out[92]:
- stint g ab r h X2b X3b hr rbi sb cs bb so ibb hbp sh sf gidp
- year team
- 2007 CIN 6 379 745 101 203 35 2 36 125.0 10.0 1.0 105 127.0 14.0 1.0 1.0 15.0 18.0
- DET 5 301 1062 162 283 54 4 37 144.0 24.0 7.0 97 176.0 3.0 10.0 4.0 8.0 28.0
- HOU 4 311 926 109 218 47 6 14 77.0 10.0 4.0 60 212.0 3.0 9.0 16.0 6.0 17.0
- LAN 11 413 1021 153 293 61 3 36 154.0 7.0 5.0 114 141.0 8.0 9.0 3.0 8.0 29.0
- NYN 13 622 1854 240 509 101 3 61 243.0 22.0 4.0 174 310.0 24.0 23.0 18.0 15.0 48.0
- SFN 5 482 1305 198 337 67 6 40 171.0 26.0 7.0 235 188.0 51.0 8.0 16.0 6.0 41.0
- TEX 2 198 729 115 200 40 4 28 115.0 21.0 4.0 73 140.0 4.0 5.0 2.0 8.0 16.0
- TOR 4 459 1408 187 378 96 2 58 223.0 4.0 2.0 190 265.0 16.0 12.0 4.0 16.0 38.0
IX indexer is deprecated
Warning
Starting in 0.20.0, the .ix
indexer is deprecated, in favor of the more strict .iloc
and .loc
indexers.
.ix
offers a lot of magic on the inference of what the user wants to do. To wit, .ix
can decideto index positionally OR via labels depending on the data type of the index. This has caused quite abit of user confusion over the years.
The recommended methods of indexing are:
.loc
if you want to label index..iloc
if you want to positionally index.
- In [93]: dfd = pd.DataFrame({'A': [1, 2, 3],
- ....: 'B': [4, 5, 6]},
- ....: index=list('abc'))
- ....:
- In [94]: dfd
- Out[94]:
- A B
- a 1 4
- b 2 5
- c 3 6
Previous behavior, where you wish to get the 0th and the 2nd elements from the index in the ‘A’ column.
- In [3]: dfd.ix[[0, 2], 'A']
- Out[3]:
- a 1
- c 3
- Name: A, dtype: int64
Using .loc
. Here we will select the appropriate indexes from the index, then use label indexing.
- In [95]: dfd.loc[dfd.index[[0, 2]], 'A']
- Out[95]:
- a 1
- c 3
- Name: A, dtype: int64
This can also be expressed using .iloc
, by explicitly getting locations on the indexers, and usingpositional indexing to select things.
- In [96]: dfd.iloc[[0, 2], dfd.columns.get_loc('A')]
- Out[96]:
- a 1
- c 3
- Name: A, dtype: int64
For getting multiple indexers, using .get_indexer
:
- In [97]: dfd.iloc[[0, 2], dfd.columns.get_indexer(['A', 'B'])]
- Out[97]:
- A B
- a 1 4
- c 3 6
Indexing with list with missing labels is deprecated
Warning
Starting in 0.21.0, using .loc
or []
with a list with one or more missing labels, is deprecated, in favor of .reindex
.
In prior versions, using .loc[list-of-labels]
would work as long as at least 1 of the keys was found (otherwise itwould raise a KeyError
). This behavior is deprecated and will show a warning message pointing to this section. Therecommended alternative is to use .reindex()
.
For example.
- In [98]: s = pd.Series([1, 2, 3])
- In [99]: s
- Out[99]:
- 0 1
- 1 2
- 2 3
- dtype: int64
Selection with all keys found is unchanged.
- In [100]: s.loc[[1, 2]]
- Out[100]:
- 1 2
- 2 3
- dtype: int64
Previous behavior
- In [4]: s.loc[[1, 2, 3]]
- Out[4]:
- 1 2.0
- 2 3.0
- 3 NaN
- dtype: float64
Current behavior
- In [4]: s.loc[[1, 2, 3]]
- Passing list-likes to .loc with any non-matching elements will raise
- KeyError in the future, you can use .reindex() as an alternative.
- See the documentation here:
- http://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
- Out[4]:
- 1 2.0
- 2 3.0
- 3 NaN
- dtype: float64
Reindexing
The idiomatic way to achieve selecting potentially not-found elements is via .reindex()
. See also the section on reindexing.
- In [101]: s.reindex([1, 2, 3])
- Out[101]:
- 1 2.0
- 2 3.0
- 3 NaN
- dtype: float64
Alternatively, if you want to select only valid keys, the following is idiomatic and efficient; it is guaranteed to preserve the dtype of the selection.
- In [102]: labels = [1, 2, 3]
- In [103]: s.loc[s.index.intersection(labels)]
- Out[103]:
- 1 2
- 2 3
- dtype: int64
Having a duplicated index will raise for a .reindex()
:
- In [104]: s = pd.Series(np.arange(4), index=['a', 'a', 'b', 'c'])
- In [105]: labels = ['c', 'd']
- In [17]: s.reindex(labels)
- ValueError: cannot reindex from a duplicate axis
Generally, you can intersect the desired labels with the currentaxis, and then reindex.
- In [106]: s.loc[s.index.intersection(labels)].reindex(labels)
- Out[106]:
- c 3.0
- d NaN
- dtype: float64
However, this would still raise if your resulting index is duplicated.
- In [41]: labels = ['a', 'd']
- In [42]: s.loc[s.index.intersection(labels)].reindex(labels)
- ValueError: cannot reindex from a duplicate axis
Selecting random samples
A random selection of rows or columns from a Series or DataFrame with the sample()
method. The method will sample rows by default, and accepts a specific number of rows/columns to return, or a fraction of rows.
- In [107]: s = pd.Series([0, 1, 2, 3, 4, 5])
- # When no arguments are passed, returns 1 row.
- In [108]: s.sample()
- Out[108]:
- 4 4
- dtype: int64
- # One may specify either a number of rows:
- In [109]: s.sample(n=3)
- Out[109]:
- 0 0
- 4 4
- 1 1
- dtype: int64
- # Or a fraction of the rows:
- In [110]: s.sample(frac=0.5)
- Out[110]:
- 5 5
- 3 3
- 1 1
- dtype: int64
By default, sample
will return each row at most once, but one can also sample with replacementusing the replace
option:
- In [111]: s = pd.Series([0, 1, 2, 3, 4, 5])
- # Without replacement (default):
- In [112]: s.sample(n=6, replace=False)
- Out[112]:
- 0 0
- 1 1
- 5 5
- 3 3
- 2 2
- 4 4
- dtype: int64
- # With replacement:
- In [113]: s.sample(n=6, replace=True)
- Out[113]:
- 0 0
- 4 4
- 3 3
- 2 2
- 4 4
- 4 4
- dtype: int64
By default, each row has an equal probability of being selected, but if you want rowsto have different probabilities, you can pass the sample
function sampling weights asweights
. These weights can be a list, a NumPy array, or a Series, but they must be of the same length as the object you are sampling. Missing values will be treated as a weight of zero, and inf values are not allowed. If weights do not sum to 1, they will be re-normalized by dividing all weights by the sum of the weights. For example:
- In [114]: s = pd.Series([0, 1, 2, 3, 4, 5])
- In [115]: example_weights = [0, 0, 0.2, 0.2, 0.2, 0.4]
- In [116]: s.sample(n=3, weights=example_weights)
- Out[116]:
- 5 5
- 4 4
- 3 3
- dtype: int64
- # Weights will be re-normalized automatically
- In [117]: example_weights2 = [0.5, 0, 0, 0, 0, 0]
- In [118]: s.sample(n=1, weights=example_weights2)
- Out[118]:
- 0 0
- dtype: int64
When applied to a DataFrame, you can use a column of the DataFrame as sampling weights(provided you are sampling rows and not columns) by simply passing the name of the columnas a string.
- In [119]: df2 = pd.DataFrame({'col1': [9, 8, 7, 6],
- .....: 'weight_column': [0.5, 0.4, 0.1, 0]})
- .....:
- In [120]: df2.sample(n=3, weights='weight_column')
- Out[120]:
- col1 weight_column
- 1 8 0.4
- 0 9 0.5
- 2 7 0.1
sample
also allows users to sample columns instead of rows using the axis
argument.
- In [121]: df3 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
- In [122]: df3.sample(n=1, axis=1)
- Out[122]:
- col1
- 0 1
- 1 2
- 2 3
Finally, one can also set a seed for sample
’s random number generator using the random_state
argument, which will accept either an integer (as a seed) or a NumPy RandomState object.
- In [123]: df4 = pd.DataFrame({'col1': [1, 2, 3], 'col2': [2, 3, 4]})
- # With a given seed, the sample will always draw the same rows.
- In [124]: df4.sample(n=2, random_state=2)
- Out[124]:
- col1 col2
- 2 3 4
- 1 2 3
- In [125]: df4.sample(n=2, random_state=2)
- Out[125]:
- col1 col2
- 2 3 4
- 1 2 3
Setting with enlargement
The .loc/[]
operations can perform enlargement when setting a non-existent key for that axis.
In the Series
case this is effectively an appending operation.
- In [126]: se = pd.Series([1, 2, 3])
- In [127]: se
- Out[127]:
- 0 1
- 1 2
- 2 3
- dtype: int64
- In [128]: se[5] = 5.
- In [129]: se
- Out[129]:
- 0 1.0
- 1 2.0
- 2 3.0
- 5 5.0
- dtype: float64
A DataFrame
can be enlarged on either axis via .loc
.
- In [130]: dfi = pd.DataFrame(np.arange(6).reshape(3, 2),
- .....: columns=['A', 'B'])
- .....:
- In [131]: dfi
- Out[131]:
- A B
- 0 0 1
- 1 2 3
- 2 4 5
- In [132]: dfi.loc[:, 'C'] = dfi.loc[:, 'A']
- In [133]: dfi
- Out[133]:
- A B C
- 0 0 1 0
- 1 2 3 2
- 2 4 5 4
This is like an append
operation on the DataFrame
.
- In [134]: dfi.loc[3] = 5
- In [135]: dfi
- Out[135]:
- A B C
- 0 0 1 0
- 1 2 3 2
- 2 4 5 4
- 3 5 5 5
Fast scalar value getting and setting
Since indexing with []
must handle a lot of cases (single-label access,slicing, boolean indexing, etc.), it has a bit of overhead in order to figureout what you’re asking for. If you only want to access a scalar value, thefastest way is to use the at
and iat
methods, which are implemented onall of the data structures.
Similarly to loc
, at
provides label based scalar lookups, while, iat
provides integer based lookups analogously to iloc
- In [136]: s.iat[5]
- Out[136]: 5
- In [137]: df.at[dates[5], 'A']
- Out[137]: -0.6736897080883706
- In [138]: df.iat[3, 0]
- Out[138]: 0.7215551622443669
You can also set using these same indexers.
- In [139]: df.at[dates[5], 'E'] = 7
- In [140]: df.iat[3, 0] = 7
at
may enlarge the object in-place as above if the indexer is missing.
- In [141]: df.at[dates[-1] + pd.Timedelta('1 day'), 0] = 7
- In [142]: df
- Out[142]:
- A B C D E 0
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
- 2000-01-03 -0.861849 -2.104569 -0.494929 1.071804 NaN NaN
- 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
- 2000-01-05 -0.424972 0.567020 0.276232 -1.087401 NaN NaN
- 2000-01-06 -0.673690 0.113648 -1.478427 0.524988 7.0 NaN
- 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
- 2000-01-08 -0.370647 -1.157892 -1.344312 0.844885 NaN NaN
- 2000-01-09 NaN NaN NaN NaN NaN 7.0
Boolean indexing
Another common operation is the use of boolean vectors to filter the data.The operators are: |
for or
, &
for and
, and ~
for not
.These must be grouped by using parentheses, since by default Python willevaluate an expression such as df.A > 2 & df.B < 3
asdf.A > (2 & df.B) < 3
, while the desired evaluation order is(df.A > 2) & (df.B < 3)
.
Using a boolean vector to index a Series works exactly as in a NumPy ndarray:
- In [143]: s = pd.Series(range(-3, 4))
- In [144]: s
- Out[144]:
- 0 -3
- 1 -2
- 2 -1
- 3 0
- 4 1
- 5 2
- 6 3
- dtype: int64
- In [145]: s[s > 0]
- Out[145]:
- 4 1
- 5 2
- 6 3
- dtype: int64
- In [146]: s[(s < -1) | (s > 0.5)]
- Out[146]:
- 0 -3
- 1 -2
- 4 1
- 5 2
- 6 3
- dtype: int64
- In [147]: s[~(s < 0)]
- Out[147]:
- 3 0
- 4 1
- 5 2
- 6 3
- dtype: int64
You may select rows from a DataFrame using a boolean vector the same length asthe DataFrame’s index (for example, something derived from one of the columnsof the DataFrame):
- In [148]: df[df['A'] > 0]
- Out[148]:
- A B C D E 0
- 2000-01-01 0.469112 -0.282863 -1.509059 -1.135632 NaN NaN
- 2000-01-02 1.212112 -0.173215 0.119209 -1.044236 NaN NaN
- 2000-01-04 7.000000 -0.706771 -1.039575 0.271860 NaN NaN
- 2000-01-07 0.404705 0.577046 -1.715002 -1.039268 NaN NaN
List comprehensions and the map
method of Series can also be used to producemore complex criteria:
- In [149]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'three', 'two', 'one', 'six'],
- .....: 'b': ['x', 'y', 'y', 'x', 'y', 'x', 'x'],
- .....: 'c': np.random.randn(7)})
- .....:
- # only want 'two' or 'three'
- In [150]: criterion = df2['a'].map(lambda x: x.startswith('t'))
- In [151]: df2[criterion]
- Out[151]:
- a b c
- 2 two y 0.041290
- 3 three x 0.361719
- 4 two y -0.238075
- # equivalent but slower
- In [152]: df2[[x.startswith('t') for x in df2['a']]]
- Out[152]:
- a b c
- 2 two y 0.041290
- 3 three x 0.361719
- 4 two y -0.238075
- # Multiple criteria
- In [153]: df2[criterion & (df2['b'] == 'x')]
- Out[153]:
- a b c
- 3 three x 0.361719
With the choice methods Selection by Label, Selection by Position,and Advanced Indexing you may select along more than one axis using boolean vectors combined with other indexing expressions.
- In [154]: df2.loc[criterion & (df2['b'] == 'x'), 'b':'c']
- Out[154]:
- b c
- 3 x 0.361719
Indexing with isin
Consider the isin()
method of Series
, which returns a booleanvector that is true wherever the Series
elements exist in the passed list.This allows you to select rows where one or more columns have values you want:
- In [155]: s = pd.Series(np.arange(5), index=np.arange(5)[::-1], dtype='int64')
- In [156]: s
- Out[156]:
- 4 0
- 3 1
- 2 2
- 1 3
- 0 4
- dtype: int64
- In [157]: s.isin([2, 4, 6])
- Out[157]:
- 4 False
- 3 False
- 2 True
- 1 False
- 0 True
- dtype: bool
- In [158]: s[s.isin([2, 4, 6])]
- Out[158]:
- 2 2
- 0 4
- dtype: int64
The same method is available for Index
objects and is useful for the caseswhen you don’t know which of the sought labels are in fact present:
- In [159]: s[s.index.isin([2, 4, 6])]
- Out[159]:
- 4 0
- 2 2
- dtype: int64
- # compare it to the following
- In [160]: s.reindex([2, 4, 6])
- Out[160]:
- 2 2.0
- 4 0.0
- 6 NaN
- dtype: float64
In addition to that, MultiIndex
allows selecting a separate level to usein the membership check:
- In [161]: s_mi = pd.Series(np.arange(6),
- .....: index=pd.MultiIndex.from_product([[0, 1], ['a', 'b', 'c']]))
- .....:
- In [162]: s_mi
- Out[162]:
- 0 a 0
- b 1
- c 2
- 1 a 3
- b 4
- c 5
- dtype: int64
- In [163]: s_mi.iloc[s_mi.index.isin([(1, 'a'), (2, 'b'), (0, 'c')])]
- Out[163]:
- 0 c 2
- 1 a 3
- dtype: int64
- In [164]: s_mi.iloc[s_mi.index.isin(['a', 'c', 'e'], level=1)]
- Out[164]:
- 0 a 0
- c 2
- 1 a 3
- c 5
- dtype: int64
DataFrame also has an isin()
method. When calling isin
, pass a set ofvalues as either an array or dict. If values is an array, isin
returnsa DataFrame of booleans that is the same shape as the original DataFrame, with Truewherever the element is in the sequence of values.
- In [165]: df = pd.DataFrame({'vals': [1, 2, 3, 4], 'ids': ['a', 'b', 'f', 'n'],
- .....: 'ids2': ['a', 'n', 'c', 'n']})
- .....:
- In [166]: values = ['a', 'b', 1, 3]
- In [167]: df.isin(values)
- Out[167]:
- vals ids ids2
- 0 True True True
- 1 False True False
- 2 True False False
- 3 False False False
Oftentimes you’ll want to match certain values with certain columns.Just make values a dict
where the key is the column, and the value isa list of items you want to check for.
- In [168]: values = {'ids': ['a', 'b'], 'vals': [1, 3]}
- In [169]: df.isin(values)
- Out[169]:
- vals ids ids2
- 0 True True False
- 1 False True False
- 2 True False False
- 3 False False False
Combine DataFrame’s isin
with the any()
and all()
methods toquickly select subsets of your data that meet a given criteria.To select a row where each column meets its own criterion:
- In [170]: values = {'ids': ['a', 'b'], 'ids2': ['a', 'c'], 'vals': [1, 3]}
- In [171]: row_mask = df.isin(values).all(1)
- In [172]: df[row_mask]
- Out[172]:
- vals ids ids2
- 0 1 a a
The where() Method and Masking
Selecting values from a Series with a boolean vector generally returns asubset of the data. To guarantee that selection output has the same shape asthe original data, you can use the where
method in Series
and DataFrame
.
To return only the selected rows:
- In [173]: s[s > 0]
- Out[173]:
- 3 1
- 2 2
- 1 3
- 0 4
- dtype: int64
To return a Series of the same shape as the original:
- In [174]: s.where(s > 0)
- Out[174]:
- 4 NaN
- 3 1.0
- 2 2.0
- 1 3.0
- 0 4.0
- dtype: float64
Selecting values from a DataFrame with a boolean criterion now also preservesinput data shape. where
is used under the hood as the implementation.The code below is equivalent to df.where(df < 0)
.
- In [175]: df[df < 0]
- Out[175]:
- A B C D
- 2000-01-01 -2.104139 -1.309525 NaN NaN
- 2000-01-02 -0.352480 NaN -1.192319 NaN
- 2000-01-03 -0.864883 NaN -0.227870 NaN
- 2000-01-04 NaN -1.222082 NaN -1.233203
- 2000-01-05 NaN -0.605656 -1.169184 NaN
- 2000-01-06 NaN -0.948458 NaN -0.684718
- 2000-01-07 -2.670153 -0.114722 NaN -0.048048
- 2000-01-08 NaN NaN -0.048788 -0.808838
In addition, where
takes an optional other
argument for replacement ofvalues where the condition is False, in the returned copy.
- In [176]: df.where(df < 0, -df)
- Out[176]:
- A B C D
- 2000-01-01 -2.104139 -1.309525 -0.485855 -0.245166
- 2000-01-02 -0.352480 -0.390389 -1.192319 -1.655824
- 2000-01-03 -0.864883 -0.299674 -0.227870 -0.281059
- 2000-01-04 -0.846958 -1.222082 -0.600705 -1.233203
- 2000-01-05 -0.669692 -0.605656 -1.169184 -0.342416
- 2000-01-06 -0.868584 -0.948458 -2.297780 -0.684718
- 2000-01-07 -2.670153 -0.114722 -0.168904 -0.048048
- 2000-01-08 -0.801196 -1.392071 -0.048788 -0.808838
You may wish to set values based on some boolean criteria.This can be done intuitively like so:
- In [177]: s2 = s.copy()
- In [178]: s2[s2 < 0] = 0
- In [179]: s2
- Out[179]:
- 4 0
- 3 1
- 2 2
- 1 3
- 0 4
- dtype: int64
- In [180]: df2 = df.copy()
- In [181]: df2[df2 < 0] = 0
- In [182]: df2
- Out[182]:
- A B C D
- 2000-01-01 0.000000 0.000000 0.485855 0.245166
- 2000-01-02 0.000000 0.390389 0.000000 1.655824
- 2000-01-03 0.000000 0.299674 0.000000 0.281059
- 2000-01-04 0.846958 0.000000 0.600705 0.000000
- 2000-01-05 0.669692 0.000000 0.000000 0.342416
- 2000-01-06 0.868584 0.000000 2.297780 0.000000
- 2000-01-07 0.000000 0.000000 0.168904 0.000000
- 2000-01-08 0.801196 1.392071 0.000000 0.000000
By default, where
returns a modified copy of the data. There is anoptional parameter inplace
so that the original data can be modifiedwithout creating a copy:
- In [183]: df_orig = df.copy()
- In [184]: df_orig.where(df > 0, -df, inplace=True)
- In [185]: df_orig
- Out[185]:
- A B C D
- 2000-01-01 2.104139 1.309525 0.485855 0.245166
- 2000-01-02 0.352480 0.390389 1.192319 1.655824
- 2000-01-03 0.864883 0.299674 0.227870 0.281059
- 2000-01-04 0.846958 1.222082 0.600705 1.233203
- 2000-01-05 0.669692 0.605656 1.169184 0.342416
- 2000-01-06 0.868584 0.948458 2.297780 0.684718
- 2000-01-07 2.670153 0.114722 0.168904 0.048048
- 2000-01-08 0.801196 1.392071 0.048788 0.808838
Note
The signature for DataFrame.where()
differs from numpy.where()
.Roughly df1.where(m, df2)
is equivalent to np.where(m, df1, df2)
.
- In [186]: df.where(df < 0, -df) == np.where(df < 0, df, -df)
- Out[186]:
- A B C D
- 2000-01-01 True True True True
- 2000-01-02 True True True True
- 2000-01-03 True True True True
- 2000-01-04 True True True True
- 2000-01-05 True True True True
- 2000-01-06 True True True True
- 2000-01-07 True True True True
- 2000-01-08 True True True True
Alignment
Furthermore, where
aligns the input boolean condition (ndarray or DataFrame),such that partial selection with setting is possible. This is analogous topartial setting via .loc
(but on the contents rather than the axis labels).
- In [187]: df2 = df.copy()
- In [188]: df2[df2[1:4] > 0] = 3
- In [189]: df2
- Out[189]:
- A B C D
- 2000-01-01 -2.104139 -1.309525 0.485855 0.245166
- 2000-01-02 -0.352480 3.000000 -1.192319 3.000000
- 2000-01-03 -0.864883 3.000000 -0.227870 3.000000
- 2000-01-04 3.000000 -1.222082 3.000000 -1.233203
- 2000-01-05 0.669692 -0.605656 -1.169184 0.342416
- 2000-01-06 0.868584 -0.948458 2.297780 -0.684718
- 2000-01-07 -2.670153 -0.114722 0.168904 -0.048048
- 2000-01-08 0.801196 1.392071 -0.048788 -0.808838
Where can also accept axis
and level
parameters to align the input whenperforming the where
.
- In [190]: df2 = df.copy()
- In [191]: df2.where(df2 > 0, df2['A'], axis='index')
- Out[191]:
- A B C D
- 2000-01-01 -2.104139 -2.104139 0.485855 0.245166
- 2000-01-02 -0.352480 0.390389 -0.352480 1.655824
- 2000-01-03 -0.864883 0.299674 -0.864883 0.281059
- 2000-01-04 0.846958 0.846958 0.600705 0.846958
- 2000-01-05 0.669692 0.669692 0.669692 0.342416
- 2000-01-06 0.868584 0.868584 2.297780 0.868584
- 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
- 2000-01-08 0.801196 1.392071 0.801196 0.801196
This is equivalent to (but faster than) the following.
- In [192]: df2 = df.copy()
- In [193]: df.apply(lambda x, y: x.where(x > 0, y), y=df['A'])
- Out[193]:
- A B C D
- 2000-01-01 -2.104139 -2.104139 0.485855 0.245166
- 2000-01-02 -0.352480 0.390389 -0.352480 1.655824
- 2000-01-03 -0.864883 0.299674 -0.864883 0.281059
- 2000-01-04 0.846958 0.846958 0.600705 0.846958
- 2000-01-05 0.669692 0.669692 0.669692 0.342416
- 2000-01-06 0.868584 0.868584 2.297780 0.868584
- 2000-01-07 -2.670153 -2.670153 0.168904 -2.670153
- 2000-01-08 0.801196 1.392071 0.801196 0.801196
New in version 0.18.1.
Where can accept a callable as condition and other
arguments. The function mustbe with one argument (the calling Series or DataFrame) and that returns valid outputas condition and other
argument.
- In [194]: df3 = pd.DataFrame({'A': [1, 2, 3],
- .....: 'B': [4, 5, 6],
- .....: 'C': [7, 8, 9]})
- .....:
- In [195]: df3.where(lambda x: x > 4, lambda x: x + 10)
- Out[195]:
- A B C
- 0 11 14 7
- 1 12 5 8
- 2 13 6 9
Mask
mask()
is the inverse boolean operation of where
.
- In [196]: s.mask(s >= 0)
- Out[196]:
- 4 NaN
- 3 NaN
- 2 NaN
- 1 NaN
- 0 NaN
- dtype: float64
- In [197]: df.mask(df >= 0)
- Out[197]:
- A B C D
- 2000-01-01 -2.104139 -1.309525 NaN NaN
- 2000-01-02 -0.352480 NaN -1.192319 NaN
- 2000-01-03 -0.864883 NaN -0.227870 NaN
- 2000-01-04 NaN -1.222082 NaN -1.233203
- 2000-01-05 NaN -0.605656 -1.169184 NaN
- 2000-01-06 NaN -0.948458 NaN -0.684718
- 2000-01-07 -2.670153 -0.114722 NaN -0.048048
- 2000-01-08 NaN NaN -0.048788 -0.808838
The query() Method
DataFrame
objects have a query()
method that allows selection using an expression.
You can get the value of the frame where column b
has valuesbetween the values of columns a
and c
. For example:
- In [198]: n = 10
- In [199]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
- In [200]: df
- Out[200]:
- a b c
- 0 0.438921 0.118680 0.863670
- 1 0.138138 0.577363 0.686602
- 2 0.595307 0.564592 0.520630
- 3 0.913052 0.926075 0.616184
- 4 0.078718 0.854477 0.898725
- 5 0.076404 0.523211 0.591538
- 6 0.792342 0.216974 0.564056
- 7 0.397890 0.454131 0.915716
- 8 0.074315 0.437913 0.019794
- 9 0.559209 0.502065 0.026437
- # pure python
- In [201]: df[(df.a < df.b) & (df.b < df.c)]
- Out[201]:
- a b c
- 1 0.138138 0.577363 0.686602
- 4 0.078718 0.854477 0.898725
- 5 0.076404 0.523211 0.591538
- 7 0.397890 0.454131 0.915716
- # query
- In [202]: df.query('(a < b) & (b < c)')
- Out[202]:
- a b c
- 1 0.138138 0.577363 0.686602
- 4 0.078718 0.854477 0.898725
- 5 0.076404 0.523211 0.591538
- 7 0.397890 0.454131 0.915716
Do the same thing but fall back on a named index if there is no columnwith the name a
.
- In [203]: df = pd.DataFrame(np.random.randint(n / 2, size=(n, 2)), columns=list('bc'))
- In [204]: df.index.name = 'a'
- In [205]: df
- Out[205]:
- b c
- a
- 0 0 4
- 1 0 1
- 2 3 4
- 3 4 3
- 4 1 4
- 5 0 3
- 6 0 1
- 7 3 4
- 8 2 3
- 9 1 1
- In [206]: df.query('a < b and b < c')
- Out[206]:
- b c
- a
- 2 3 4
If instead you don’t want to or cannot name your index, you can use the nameindex
in your query expression:
- In [207]: df = pd.DataFrame(np.random.randint(n, size=(n, 2)), columns=list('bc'))
- In [208]: df
- Out[208]:
- b c
- 0 3 1
- 1 3 0
- 2 5 6
- 3 5 2
- 4 7 4
- 5 0 1
- 6 2 5
- 7 0 1
- 8 6 0
- 9 7 9
- In [209]: df.query('index < b < c')
- Out[209]:
- b c
- 2 5 6
Note
If the name of your index overlaps with a column name, the column name isgiven precedence. For example,
- In [210]: df = pd.DataFrame({'a': np.random.randint(5, size=5)})
- In [211]: df.index.name = 'a'
- In [212]: df.query('a > 2') # uses the column 'a', not the index
- Out[212]:
- a
- a
- 1 3
- 3 3
You can still use the index in a query expression by using the specialidentifier ‘index’:
- In [213]: df.query('index > 2')
- Out[213]:
- a
- a
- 3 3
- 4 2
If for some reason you have a column named index
, then you can refer tothe index as ilevel_0
as well, but at this point you should considerrenaming your columns to something less ambiguous.
MultiIndex query() Syntax
You can also use the levels of a DataFrame
with aMultiIndex
as if they were columns in the frame:
- In [214]: n = 10
- In [215]: colors = np.random.choice(['red', 'green'], size=n)
- In [216]: foods = np.random.choice(['eggs', 'ham'], size=n)
- In [217]: colors
- Out[217]:
- array(['red', 'red', 'red', 'green', 'green', 'green', 'green', 'green',
- 'green', 'green'], dtype='<U5')
- In [218]: foods
- Out[218]:
- array(['ham', 'ham', 'eggs', 'eggs', 'eggs', 'ham', 'ham', 'eggs', 'eggs',
- 'eggs'], dtype='<U4')
- In [219]: index = pd.MultiIndex.from_arrays([colors, foods], names=['color', 'food'])
- In [220]: df = pd.DataFrame(np.random.randn(n, 2), index=index)
- In [221]: df
- Out[221]:
- 0 1
- color food
- red ham 0.194889 -0.381994
- ham 0.318587 2.089075
- eggs -0.728293 -0.090255
- green eggs -0.748199 1.318931
- eggs -2.029766 0.792652
- ham 0.461007 -0.542749
- ham -0.305384 -0.479195
- eggs 0.095031 -0.270099
- eggs -0.707140 -0.773882
- eggs 0.229453 0.304418
- In [222]: df.query('color == "red"')
- Out[222]:
- 0 1
- color food
- red ham 0.194889 -0.381994
- ham 0.318587 2.089075
- eggs -0.728293 -0.090255
If the levels of the MultiIndex
are unnamed, you can refer to them usingspecial names:
- In [223]: df.index.names = [None, None]
- In [224]: df
- Out[224]:
- 0 1
- red ham 0.194889 -0.381994
- ham 0.318587 2.089075
- eggs -0.728293 -0.090255
- green eggs -0.748199 1.318931
- eggs -2.029766 0.792652
- ham 0.461007 -0.542749
- ham -0.305384 -0.479195
- eggs 0.095031 -0.270099
- eggs -0.707140 -0.773882
- eggs 0.229453 0.304418
- In [225]: df.query('ilevel_0 == "red"')
- Out[225]:
- 0 1
- red ham 0.194889 -0.381994
- ham 0.318587 2.089075
- eggs -0.728293 -0.090255
The convention is ilevel_0
, which means “index level 0” for the 0th levelof the index
.
query() Use Cases
A use case for query()
is when you have a collection ofDataFrame
objects that have a subset of column names (or indexlevels/names) in common. You can pass the same query to both frames _without_having to specify which frame you’re interested in querying
- In [226]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
- In [227]: df
- Out[227]:
- a b c
- 0 0.224283 0.736107 0.139168
- 1 0.302827 0.657803 0.713897
- 2 0.611185 0.136624 0.984960
- 3 0.195246 0.123436 0.627712
- 4 0.618673 0.371660 0.047902
- 5 0.480088 0.062993 0.185760
- 6 0.568018 0.483467 0.445289
- 7 0.309040 0.274580 0.587101
- 8 0.258993 0.477769 0.370255
- 9 0.550459 0.840870 0.304611
- In [228]: df2 = pd.DataFrame(np.random.rand(n + 2, 3), columns=df.columns)
- In [229]: df2
- Out[229]:
- a b c
- 0 0.357579 0.229800 0.596001
- 1 0.309059 0.957923 0.965663
- 2 0.123102 0.336914 0.318616
- 3 0.526506 0.323321 0.860813
- 4 0.518736 0.486514 0.384724
- 5 0.190804 0.505723 0.614533
- 6 0.891939 0.623977 0.676639
- 7 0.480559 0.378528 0.460858
- 8 0.420223 0.136404 0.141295
- 9 0.732206 0.419540 0.604675
- 10 0.604466 0.848974 0.896165
- 11 0.589168 0.920046 0.732716
- In [230]: expr = '0.0 <= a <= c <= 0.5'
- In [231]: map(lambda frame: frame.query(expr), [df, df2])
- Out[231]: <map at 0x7f4527f58c90>
query() Python versus pandas Syntax Comparison
Full numpy-like syntax:
- In [232]: df = pd.DataFrame(np.random.randint(n, size=(n, 3)), columns=list('abc'))
- In [233]: df
- Out[233]:
- a b c
- 0 7 8 9
- 1 1 0 7
- 2 2 7 2
- 3 6 2 2
- 4 2 6 3
- 5 3 8 2
- 6 1 7 2
- 7 5 1 5
- 8 9 8 0
- 9 1 5 0
- In [234]: df.query('(a < b) & (b < c)')
- Out[234]:
- a b c
- 0 7 8 9
- In [235]: df[(df.a < df.b) & (df.b < df.c)]
- Out[235]:
- a b c
- 0 7 8 9
Slightly nicer by removing the parentheses (by binding making comparisonoperators bind tighter than &
and |
).
- In [236]: df.query('a < b & b < c')
- Out[236]:
- a b c
- 0 7 8 9
Use English instead of symbols:
- In [237]: df.query('a < b and b < c')
- Out[237]:
- a b c
- 0 7 8 9
Pretty close to how you might write it on paper:
- In [238]: df.query('a < b < c')
- Out[238]:
- a b c
- 0 7 8 9
The in and not in operators
query()
also supports special use of Python’s in
andnot in
comparison operators, providing a succinct syntax for calling theisin
method of a Series
or DataFrame
.
- # get all rows where columns "a" and "b" have overlapping values
- In [239]: df = pd.DataFrame({'a': list('aabbccddeeff'), 'b': list('aaaabbbbcccc'),
- .....: 'c': np.random.randint(5, size=12),
- .....: 'd': np.random.randint(9, size=12)})
- .....:
- In [240]: df
- Out[240]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 3 b a 2 1
- 4 c b 3 6
- 5 c b 0 2
- 6 d b 3 3
- 7 d b 2 1
- 8 e c 4 3
- 9 e c 2 0
- 10 f c 0 6
- 11 f c 1 2
- In [241]: df.query('a in b')
- Out[241]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 3 b a 2 1
- 4 c b 3 6
- 5 c b 0 2
- # How you'd do it in pure Python
- In [242]: df[df.a.isin(df.b)]
- Out[242]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 3 b a 2 1
- 4 c b 3 6
- 5 c b 0 2
- In [243]: df.query('a not in b')
- Out[243]:
- a b c d
- 6 d b 3 3
- 7 d b 2 1
- 8 e c 4 3
- 9 e c 2 0
- 10 f c 0 6
- 11 f c 1 2
- # pure Python
- In [244]: df[~df.a.isin(df.b)]
- Out[244]:
- a b c d
- 6 d b 3 3
- 7 d b 2 1
- 8 e c 4 3
- 9 e c 2 0
- 10 f c 0 6
- 11 f c 1 2
You can combine this with other expressions for very succinct queries:
- # rows where cols a and b have overlapping values
- # and col c's values are less than col d's
- In [245]: df.query('a in b and c < d')
- Out[245]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 4 c b 3 6
- 5 c b 0 2
- # pure Python
- In [246]: df[df.b.isin(df.a) & (df.c < df.d)]
- Out[246]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 4 c b 3 6
- 5 c b 0 2
- 10 f c 0 6
- 11 f c 1 2
Note
Note that in
and not in
are evaluated in Python, since numexpr
has no equivalent of this operation. However, only the in
/not in
expression itself is evaluated in vanilla Python. For example, in theexpression
- df.query('a in b + c + d')
(b + c + d)
is evaluated by numexpr
and then the in
operation is evaluated in plain Python. In general, any operations that canbe evaluated using numexpr
will be.
Special use of the == operator with list objects
Comparing a list
of values to a column using ==
/!=
works similarlyto in
/not in
.
- In [247]: df.query('b == ["a", "b", "c"]')
- Out[247]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 3 b a 2 1
- 4 c b 3 6
- 5 c b 0 2
- 6 d b 3 3
- 7 d b 2 1
- 8 e c 4 3
- 9 e c 2 0
- 10 f c 0 6
- 11 f c 1 2
- # pure Python
- In [248]: df[df.b.isin(["a", "b", "c"])]
- Out[248]:
- a b c d
- 0 a a 2 6
- 1 a a 4 7
- 2 b a 1 6
- 3 b a 2 1
- 4 c b 3 6
- 5 c b 0 2
- 6 d b 3 3
- 7 d b 2 1
- 8 e c 4 3
- 9 e c 2 0
- 10 f c 0 6
- 11 f c 1 2
- In [249]: df.query('c == [1, 2]')
- Out[249]:
- a b c d
- 0 a a 2 6
- 2 b a 1 6
- 3 b a 2 1
- 7 d b 2 1
- 9 e c 2 0
- 11 f c 1 2
- In [250]: df.query('c != [1, 2]')
- Out[250]:
- a b c d
- 1 a a 4 7
- 4 c b 3 6
- 5 c b 0 2
- 6 d b 3 3
- 8 e c 4 3
- 10 f c 0 6
- # using in/not in
- In [251]: df.query('[1, 2] in c')
- Out[251]:
- a b c d
- 0 a a 2 6
- 2 b a 1 6
- 3 b a 2 1
- 7 d b 2 1
- 9 e c 2 0
- 11 f c 1 2
- In [252]: df.query('[1, 2] not in c')
- Out[252]:
- a b c d
- 1 a a 4 7
- 4 c b 3 6
- 5 c b 0 2
- 6 d b 3 3
- 8 e c 4 3
- 10 f c 0 6
- # pure Python
- In [253]: df[df.c.isin([1, 2])]
- Out[253]:
- a b c d
- 0 a a 2 6
- 2 b a 1 6
- 3 b a 2 1
- 7 d b 2 1
- 9 e c 2 0
- 11 f c 1 2
Boolean operators
You can negate boolean expressions with the word not
or the ~
operator.
- In [254]: df = pd.DataFrame(np.random.rand(n, 3), columns=list('abc'))
- In [255]: df['bools'] = np.random.rand(len(df)) > 0.5
- In [256]: df.query('~bools')
- Out[256]:
- a b c bools
- 2 0.697753 0.212799 0.329209 False
- 7 0.275396 0.691034 0.826619 False
- 8 0.190649 0.558748 0.262467 False
- In [257]: df.query('not bools')
- Out[257]:
- a b c bools
- 2 0.697753 0.212799 0.329209 False
- 7 0.275396 0.691034 0.826619 False
- 8 0.190649 0.558748 0.262467 False
- In [258]: df.query('not bools') == df[~df.bools]
- Out[258]:
- a b c bools
- 2 True True True True
- 7 True True True True
- 8 True True True True
Of course, expressions can be arbitrarily complex too:
- # short query syntax
- In [259]: shorter = df.query('a < b < c and (not bools) or bools > 2')
- # equivalent in pure Python
- In [260]: longer = df[(df.a < df.b) & (df.b < df.c) & (~df.bools) | (df.bools > 2)]
- In [261]: shorter
- Out[261]:
- a b c bools
- 7 0.275396 0.691034 0.826619 False
- In [262]: longer
- Out[262]:
- a b c bools
- 7 0.275396 0.691034 0.826619 False
- In [263]: shorter == longer
- Out[263]:
- a b c bools
- 7 True True True True
Performance of query()
DataFrame.query()
using numexpr
is slightly faster than Python forlarge frames.
Note
You will only see the performance benefits of using the numexpr
enginewith DataFrame.query()
if your frame has more than approximately 200,000rows.
This plot was created using a DataFrame
with 3 columns each containingfloating point values generated using numpy.random.randn()
.
Duplicate data
If you want to identify and remove duplicate rows in a DataFrame, there aretwo methods that will help: duplicated
and drop_duplicates
. Eachtakes as an argument the columns to use to identify duplicated rows.
duplicated
returns a boolean vector whose length is the number of rows, and which indicates whether a row is duplicated.drop_duplicates
removes duplicate rows.
By default, the first observed row of a duplicate set is considered unique, buteach method has a keep
parameter to specify targets to be kept.
keep='first'
(default): mark / drop duplicates except for the first occurrence.keep='last'
: mark / drop duplicates except for the last occurrence.keep=False
: mark / drop all duplicates.
- In [264]: df2 = pd.DataFrame({'a': ['one', 'one', 'two', 'two', 'two', 'three', 'four'],
- .....: 'b': ['x', 'y', 'x', 'y', 'x', 'x', 'x'],
- .....: 'c': np.random.randn(7)})
- .....:
- In [265]: df2
- Out[265]:
- a b c
- 0 one x -1.067137
- 1 one y 0.309500
- 2 two x -0.211056
- 3 two y -1.842023
- 4 two x -0.390820
- 5 three x -1.964475
- 6 four x 1.298329
- In [266]: df2.duplicated('a')
- Out[266]:
- 0 False
- 1 True
- 2 False
- 3 True
- 4 True
- 5 False
- 6 False
- dtype: bool
- In [267]: df2.duplicated('a', keep='last')
- Out[267]:
- 0 True
- 1 False
- 2 True
- 3 True
- 4 False
- 5 False
- 6 False
- dtype: bool
- In [268]: df2.duplicated('a', keep=False)
- Out[268]:
- 0 True
- 1 True
- 2 True
- 3 True
- 4 True
- 5 False
- 6 False
- dtype: bool
- In [269]: df2.drop_duplicates('a')
- Out[269]:
- a b c
- 0 one x -1.067137
- 2 two x -0.211056
- 5 three x -1.964475
- 6 four x 1.298329
- In [270]: df2.drop_duplicates('a', keep='last')
- Out[270]:
- a b c
- 1 one y 0.309500
- 4 two x -0.390820
- 5 three x -1.964475
- 6 four x 1.298329
- In [271]: df2.drop_duplicates('a', keep=False)
- Out[271]:
- a b c
- 5 three x -1.964475
- 6 four x 1.298329
Also, you can pass a list of columns to identify duplications.
- In [272]: df2.duplicated(['a', 'b'])
- Out[272]:
- 0 False
- 1 False
- 2 False
- 3 False
- 4 True
- 5 False
- 6 False
- dtype: bool
- In [273]: df2.drop_duplicates(['a', 'b'])
- Out[273]:
- a b c
- 0 one x -1.067137
- 1 one y 0.309500
- 2 two x -0.211056
- 3 two y -1.842023
- 5 three x -1.964475
- 6 four x 1.298329
To drop duplicates by index value, use Index.duplicated
then perform slicing.The same set of options are available for the keep
parameter.
- In [274]: df3 = pd.DataFrame({'a': np.arange(6),
- .....: 'b': np.random.randn(6)},
- .....: index=['a', 'a', 'b', 'c', 'b', 'a'])
- .....:
- In [275]: df3
- Out[275]:
- a b
- a 0 1.440455
- a 1 2.456086
- b 2 1.038402
- c 3 -0.894409
- b 4 0.683536
- a 5 3.082764
- In [276]: df3.index.duplicated()
- Out[276]: array([False, True, False, False, True, True])
- In [277]: df3[~df3.index.duplicated()]
- Out[277]:
- a b
- a 0 1.440455
- b 2 1.038402
- c 3 -0.894409
- In [278]: df3[~df3.index.duplicated(keep='last')]
- Out[278]:
- a b
- c 3 -0.894409
- b 4 0.683536
- a 5 3.082764
- In [279]: df3[~df3.index.duplicated(keep=False)]
- Out[279]:
- a b
- c 3 -0.894409
Dictionary-like get() method
Each of Series or DataFrame have a get
method which can return adefault value.
- In [280]: s = pd.Series([1, 2, 3], index=['a', 'b', 'c'])
- In [281]: s.get('a') # equivalent to s['a']
- Out[281]: 1
- In [282]: s.get('x', default=-1)
- Out[282]: -1
The lookup() method
Sometimes you want to extract a set of values given a sequence of row labelsand column labels, and the lookup
method allows for this and returns aNumPy array. For instance:
- In [283]: dflookup = pd.DataFrame(np.random.rand(20, 4), columns = ['A', 'B', 'C', 'D'])
- In [284]: dflookup.lookup(list(range(0, 10, 2)), ['B', 'C', 'A', 'B', 'D'])
- Out[284]: array([0.3506, 0.4779, 0.4825, 0.9197, 0.5019])
Index objects
The pandas Index
class and its subclasses can be viewed asimplementing an ordered multiset. Duplicates are allowed. However, if you tryto convert an Index
object with duplicate entries into aset
, an exception will be raised.
Index
also provides the infrastructure necessary forlookups, data alignment, and reindexing. The easiest way to create anIndex
directly is to pass a list
or other sequence toIndex
:
- In [285]: index = pd.Index(['e', 'd', 'a', 'b'])
- In [286]: index
- Out[286]: Index(['e', 'd', 'a', 'b'], dtype='object')
- In [287]: 'd' in index
- Out[287]: True
You can also pass a name
to be stored in the index:
- In [288]: index = pd.Index(['e', 'd', 'a', 'b'], name='something')
- In [289]: index.name
- Out[289]: 'something'
The name, if set, will be shown in the console display:
- In [290]: index = pd.Index(list(range(5)), name='rows')
- In [291]: columns = pd.Index(['A', 'B', 'C'], name='cols')
- In [292]: df = pd.DataFrame(np.random.randn(5, 3), index=index, columns=columns)
- In [293]: df
- Out[293]:
- cols A B C
- rows
- 0 1.295989 0.185778 0.436259
- 1 0.678101 0.311369 -0.528378
- 2 -0.674808 -1.103529 -0.656157
- 3 1.889957 2.076651 -1.102192
- 4 -1.211795 -0.791746 0.634724
- In [294]: df['A']
- Out[294]:
- rows
- 0 1.295989
- 1 0.678101
- 2 -0.674808
- 3 1.889957
- 4 -1.211795
- Name: A, dtype: float64
Setting metadata
Indexes are “mostly immutable”, but it is possible to set and change theirmetadata, like the index name
(or, for MultiIndex
, levels
andcodes
).
You can use the rename
, set_names
, set_levels
, and set_codes
to set these attributes directly. They default to returning a copy; however,you can specify inplace=True
to have the data change in place.
See Advanced Indexing for usage of MultiIndexes.
- In [295]: ind = pd.Index([1, 2, 3])
- In [296]: ind.rename("apple")
- Out[296]: Int64Index([1, 2, 3], dtype='int64', name='apple')
- In [297]: ind
- Out[297]: Int64Index([1, 2, 3], dtype='int64')
- In [298]: ind.set_names(["apple"], inplace=True)
- In [299]: ind.name = "bob"
- In [300]: ind
- Out[300]: Int64Index([1, 2, 3], dtype='int64', name='bob')
set_names
, set_levels
, and set_codes
also take an optionallevel
argument
- In [301]: index = pd.MultiIndex.from_product([range(3), ['one', 'two']], names=['first', 'second'])
- In [302]: index
- Out[302]:
- MultiIndex([(0, 'one'),
- (0, 'two'),
- (1, 'one'),
- (1, 'two'),
- (2, 'one'),
- (2, 'two')],
- names=['first', 'second'])
- In [303]: index.levels[1]
- Out[303]: Index(['one', 'two'], dtype='object', name='second')
- In [304]: index.set_levels(["a", "b"], level=1)
- Out[304]:
- MultiIndex([(0, 'a'),
- (0, 'b'),
- (1, 'a'),
- (1, 'b'),
- (2, 'a'),
- (2, 'b')],
- names=['first', 'second'])
Set operations on Index objects
The two main operations are union (|)
and intersection (&)
.These can be directly called as instance methods or used via overloadedoperators. Difference is provided via the .difference()
method.
- In [305]: a = pd.Index(['c', 'b', 'a'])
- In [306]: b = pd.Index(['c', 'e', 'd'])
- In [307]: a | b
- Out[307]: Index(['a', 'b', 'c', 'd', 'e'], dtype='object')
- In [308]: a & b
- Out[308]: Index(['c'], dtype='object')
- In [309]: a.difference(b)
- Out[309]: Index(['a', 'b'], dtype='object')
Also available is the symmetric_difference (^)
operation, which returns elementsthat appear in either idx1
or idx2
, but not in both. This isequivalent to the Index created by idx1.difference(idx2).union(idx2.difference(idx1))
,with duplicates dropped.
- In [310]: idx1 = pd.Index([1, 2, 3, 4])
- In [311]: idx2 = pd.Index([2, 3, 4, 5])
- In [312]: idx1.symmetric_difference(idx2)
- Out[312]: Int64Index([1, 5], dtype='int64')
- In [313]: idx1 ^ idx2
- Out[313]: Int64Index([1, 5], dtype='int64')
Note
The resulting index from a set operation will be sorted in ascending order.
When performing Index.union()
between indexes with different dtypes, the indexesmust be cast to a common dtype. Typically, though not always, this is object dtype. Theexception is when performing a union between integer and float data. In this case, theinteger values are converted to float
- In [314]: idx1 = pd.Index([0, 1, 2])
- In [315]: idx2 = pd.Index([0.5, 1.5])
- In [316]: idx1 | idx2
- Out[316]: Float64Index([0.0, 0.5, 1.0, 1.5, 2.0], dtype='float64')
Missing values
Important
Even though Index
can hold missing values (NaN
), it should be avoidedif you do not want any unexpected results. For example, some operationsexclude missing values implicitly.
Index.fillna
fills missing values with specified scalar value.
- In [317]: idx1 = pd.Index([1, np.nan, 3, 4])
- In [318]: idx1
- Out[318]: Float64Index([1.0, nan, 3.0, 4.0], dtype='float64')
- In [319]: idx1.fillna(2)
- Out[319]: Float64Index([1.0, 2.0, 3.0, 4.0], dtype='float64')
- In [320]: idx2 = pd.DatetimeIndex([pd.Timestamp('2011-01-01'),
- .....: pd.NaT,
- .....: pd.Timestamp('2011-01-03')])
- .....:
- In [321]: idx2
- Out[321]: DatetimeIndex(['2011-01-01', 'NaT', '2011-01-03'], dtype='datetime64[ns]', freq=None)
- In [322]: idx2.fillna(pd.Timestamp('2011-01-02'))
- Out[322]: DatetimeIndex(['2011-01-01', '2011-01-02', '2011-01-03'], dtype='datetime64[ns]', freq=None)
Set / reset index
Occasionally you will load or create a data set into a DataFrame and want toadd an index after you’ve already done so. There are a couple of differentways.
Set an index
DataFrame has a set_index()
method which takes a column name(for a regular Index
) or a list of column names (for a MultiIndex
).To create a new, re-indexed DataFrame:
- In [323]: data
- Out[323]:
- a b c d
- 0 bar one z 1.0
- 1 bar two y 2.0
- 2 foo one x 3.0
- 3 foo two w 4.0
- In [324]: indexed1 = data.set_index('c')
- In [325]: indexed1
- Out[325]:
- a b d
- c
- z bar one 1.0
- y bar two 2.0
- x foo one 3.0
- w foo two 4.0
- In [326]: indexed2 = data.set_index(['a', 'b'])
- In [327]: indexed2
- Out[327]:
- c d
- a b
- bar one z 1.0
- two y 2.0
- foo one x 3.0
- two w 4.0
The append
keyword option allow you to keep the existing index and appendthe given columns to a MultiIndex:
- In [328]: frame = data.set_index('c', drop=False)
- In [329]: frame = frame.set_index(['a', 'b'], append=True)
- In [330]: frame
- Out[330]:
- c d
- c a b
- z bar one z 1.0
- y bar two y 2.0
- x foo one x 3.0
- w foo two w 4.0
Other options in set_index
allow you not drop the index columns or to addthe index in-place (without creating a new object):
- In [331]: data.set_index('c', drop=False)
- Out[331]:
- a b c d
- c
- z bar one z 1.0
- y bar two y 2.0
- x foo one x 3.0
- w foo two w 4.0
- In [332]: data.set_index(['a', 'b'], inplace=True)
- In [333]: data
- Out[333]:
- c d
- a b
- bar one z 1.0
- two y 2.0
- foo one x 3.0
- two w 4.0
Reset the index
As a convenience, there is a new function on DataFrame calledreset_index()
which transfers the index values into theDataFrame’s columns and sets a simple integer index.This is the inverse operation of set_index()
.
- In [334]: data
- Out[334]:
- c d
- a b
- bar one z 1.0
- two y 2.0
- foo one x 3.0
- two w 4.0
- In [335]: data.reset_index()
- Out[335]:
- a b c d
- 0 bar one z 1.0
- 1 bar two y 2.0
- 2 foo one x 3.0
- 3 foo two w 4.0
The output is more similar to a SQL table or a record array. The names for thecolumns derived from the index are the ones stored in the names
attribute.
You can use the level
keyword to remove only a portion of the index:
- In [336]: frame
- Out[336]:
- c d
- c a b
- z bar one z 1.0
- y bar two y 2.0
- x foo one x 3.0
- w foo two w 4.0
- In [337]: frame.reset_index(level=1)
- Out[337]:
- a c d
- c b
- z one bar z 1.0
- y two bar y 2.0
- x one foo x 3.0
- w two foo w 4.0
reset_index
takes an optional parameter drop
which if true simplydiscards the index, instead of putting index values in the DataFrame’s columns.
Adding an ad hoc index
If you create an index yourself, you can just assign it to the index
field:
- data.index = index
Returning a view versus a copy
When setting values in a pandas object, care must be taken to avoid what is calledchained indexing
. Here is an example.
- In [338]: dfmi = pd.DataFrame([list('abcd'),
- .....: list('efgh'),
- .....: list('ijkl'),
- .....: list('mnop')],
- .....: columns=pd.MultiIndex.from_product([['one', 'two'],
- .....: ['first', 'second']]))
- .....:
- In [339]: dfmi
- Out[339]:
- one two
- first second first second
- 0 a b c d
- 1 e f g h
- 2 i j k l
- 3 m n o p
Compare these two access methods:
- In [340]: dfmi['one']['second']
- Out[340]:
- 0 b
- 1 f
- 2 j
- 3 n
- Name: second, dtype: object
- In [341]: dfmi.loc[:, ('one', 'second')]
- Out[341]:
- 0 b
- 1 f
- 2 j
- 3 n
- Name: (one, second), dtype: object
These both yield the same results, so which should you use? It is instructive to understand the orderof operations on these and why method 2 (.loc
) is much preferred over method 1 (chained []
).
dfmi['one']
selects the first level of the columns and returns a DataFrame that is singly-indexed.Then another Python operation dfmiwithone['second']
selects the series indexed by 'second'
.This is indicated by the variable dfmi_with_one
because pandas sees these operations as separate events.e.g. separate calls to __getitem
, so it has to treat them as linear operations, they happen one after another.
Contrast this to df.loc[:,('one','second')]
which passes a nested tuple of (slice(None),('one','second'))
to a single call togetitem
. This allows pandas to deal with this as a single entity. Furthermore this order of operations can be significantlyfaster, and allows one to index both axes if so desired.
Why does assignment fail when using chained indexing?
The problem in the previous section is just a performance issue. What’s up withthe SettingWithCopy
warning? We don’t usually throw warnings around whenyou do something that might cost a few extra milliseconds!
But it turns out that assigning to the product of chained indexing hasinherently unpredictable results. To see this, think about how the Pythoninterpreter executes this code:
- dfmi.loc[:, ('one', 'second')] = value
- # becomes
- dfmi.loc.__setitem__((slice(None), ('one', 'second')), value)
But this code is handled differently:
- dfmi['one']['second'] = value
- # becomes
- dfmi.__getitem__('one').__setitem__('second', value)
See that getitem
in there? Outside of simple cases, it’s very hard topredict whether it will return a view or a copy (it depends on the memory layoutof the array, about which pandas makes no guarantees), and therefore whetherthe setitem
will modify dfmi
or a temporary object that gets thrownout immediately afterward. That’s what SettingWithCopy
is warning youabout!
Note
You may be wondering whether we should be concerned about the loc
property in the first example. But dfmi.loc
is guaranteed to be dfmi
itself with modified indexing behavior, so dfmi.loc.getitem
/dfmi.loc.setitem
operate on dfmi
directly. Of course,dfmi.loc.getitem(idx)
may be a view or a copy of dfmi
.
Sometimes a SettingWithCopy
warning will arise at times when there’s noobvious chained indexing going on. These are the bugs thatSettingWithCopy
is designed to catch! Pandas is probably trying to warn youthat you’ve done this:
- def do_something(df):
- foo = df[['bar', 'baz']] # Is foo a view? A copy? Nobody knows!
- # ... many lines here ...
- # We don't know whether this will modify df or not!
- foo['quux'] = value
- return foo
Yikes!
Evaluation order matters
When you use chained indexing, the order and type of the indexing operationpartially determine whether the result is a slice into the original object, ora copy of the slice.
Pandas has the SettingWithCopyWarning
because assigning to a copy of aslice is frequently not intentional, but a mistake caused by chained indexingreturning a copy where a slice was expected.
If you would like pandas to be more or less trusting about assignment to achained indexing expression, you can set the optionmode.chained_assignment
to one of these values:
'warn'
, the default, means aSettingWithCopyWarning
is printed.'raise'
means pandas will raise aSettingWithCopyException
you have to deal with.None
will suppress the warnings entirely.
- In [342]: dfb = pd.DataFrame({'a': ['one', 'one', 'two',
- .....: 'three', 'two', 'one', 'six'],
- .....: 'c': np.arange(7)})
- .....:
- # This will show the SettingWithCopyWarning
- # but the frame values will be set
- In [343]: dfb['c'][dfb.a.str.startswith('o')] = 42
This however is operating on a copy and will not work.
- >>> pd.set_option('mode.chained_assignment','warn')
- >>> dfb[dfb.a.str.startswith('o')]['c'] = 42
- Traceback (most recent call last)
- ...
- SettingWithCopyWarning:
- A value is trying to be set on a copy of a slice from a DataFrame.
- Try using .loc[row_index,col_indexer] = value instead
A chained assignment can also crop up in setting in a mixed dtype frame.
Note
These setting rules apply to all of .loc/.iloc
.
This is the correct access method:
- In [344]: dfc = pd.DataFrame({'A': ['aaa', 'bbb', 'ccc'], 'B': [1, 2, 3]})
- In [345]: dfc.loc[0, 'A'] = 11
- In [346]: dfc
- Out[346]:
- A B
- 0 11 1
- 1 bbb 2
- 2 ccc 3
This can work at times, but it is not guaranteed to, and therefore should be avoided:
- In [347]: dfc = dfc.copy()
- In [348]: dfc['A'][0] = 111
- In [349]: dfc
- Out[349]:
- A B
- 0 111 1
- 1 bbb 2
- 2 ccc 3
This will not work at all, and so should be avoided:
- >>> pd.set_option('mode.chained_assignment','raise')
- >>> dfc.loc[0]['A'] = 1111
- Traceback (most recent call last)
- ...
- SettingWithCopyException:
- A value is trying to be set on a copy of a slice from a DataFrame.
- Try using .loc[row_index,col_indexer] = value instead
Warning
The chained assignment warnings / exceptions are aiming to inform the user of a possibly invalidassignment. There may be false positives; situations where a chained assignment is inadvertentlyreported.