10 minutes to pandas
This is a short introduction to pandas, geared mainly for new users.You can see more complex recipes in the Cookbook.
Customarily, we import as follows:
- In [1]: import numpy as np
- In [2]: import pandas as pd
Object creation
See the Data Structure Intro section.
Creating a Series
by passing a list of values, letting pandas createa default integer index:
- In [3]: s = pd.Series([1, 3, 5, np.nan, 6, 8])
- In [4]: s
- Out[4]:
- 0 1.0
- 1 3.0
- 2 5.0
- 3 NaN
- 4 6.0
- 5 8.0
- dtype: float64
Creating a DataFrame
by passing a NumPy array, with a datetime indexand labeled columns:
- In [5]: dates = pd.date_range('20130101', periods=6)
- In [6]: dates
- Out[6]:
- DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
- '2013-01-05', '2013-01-06'],
- dtype='datetime64[ns]', freq='D')
- In [7]: df = pd.DataFrame(np.random.randn(6, 4), index=dates, columns=list('ABCD'))
- In [8]: df
- Out[8]:
- A B C D
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
- 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
Creating a DataFrame
by passing a dict of objects that can be converted to series-like.
- In [9]: df2 = pd.DataFrame({'A': 1.,
- ...: 'B': pd.Timestamp('20130102'),
- ...: 'C': pd.Series(1, index=list(range(4)), dtype='float32'),
- ...: 'D': np.array([3] * 4, dtype='int32'),
- ...: 'E': pd.Categorical(["test", "train", "test", "train"]),
- ...: 'F': 'foo'})
- ...:
- In [10]: df2
- Out[10]:
- A B C D E F
- 0 1.0 2013-01-02 1.0 3 test foo
- 1 1.0 2013-01-02 1.0 3 train foo
- 2 1.0 2013-01-02 1.0 3 test foo
- 3 1.0 2013-01-02 1.0 3 train foo
The columns of the resulting DataFrame
have differentdtypes.
- In [11]: df2.dtypes
- Out[11]:
- A float64
- B datetime64[ns]
- C float32
- D int32
- E category
- F object
- dtype: object
If you’re using IPython, tab completion for column names (as well as publicattributes) is automatically enabled. Here’s a subset of the attributes thatwill be completed:
- In [12]: df2.<TAB> # noqa: E225, E999
- df2.A df2.bool
- df2.abs df2.boxplot
- df2.add df2.C
- df2.add_prefix df2.clip
- df2.add_suffix df2.clip_lower
- df2.align df2.clip_upper
- df2.all df2.columns
- df2.any df2.combine
- df2.append df2.combine_first
- df2.apply df2.compound
- df2.applymap df2.consolidate
- df2.D
As you can see, the columns A
, B
, C
, and D
are automaticallytab completed. E
is there as well; the rest of the attributes have beentruncated for brevity.
Viewing data
See the Basics section.
Here is how to view the top and bottom rows of the frame:
- In [13]: df.head()
- Out[13]:
- A B C D
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
- In [14]: df.tail(3)
- Out[14]:
- A B C D
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
- 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
Display the index, columns:
- In [15]: df.index
- Out[15]:
- DatetimeIndex(['2013-01-01', '2013-01-02', '2013-01-03', '2013-01-04',
- '2013-01-05', '2013-01-06'],
- dtype='datetime64[ns]', freq='D')
- In [16]: df.columns
- Out[16]: Index(['A', 'B', 'C', 'D'], dtype='object')
DataFrame.to_numpy()
gives a NumPy representation of the underlying data.Note that this can be an expensive operation when your DataFrame
hascolumns with different data types, which comes down to a fundamental differencebetween pandas and NumPy: NumPy arrays have one dtype for the entire array,while pandas DataFrames have one dtype per column. When you callDataFrame.to_numpy()
, pandas will find the NumPy dtype that can hold _all_of the dtypes in the DataFrame. This may end up being object
, which requirescasting every value to a Python object.
For df
, our DataFrame
of all floating-point values,DataFrame.to_numpy()
is fast and doesn’t require copying data.
- In [17]: df.to_numpy()
- Out[17]:
- array([[ 0.4691, -0.2829, -1.5091, -1.1356],
- [ 1.2121, -0.1732, 0.1192, -1.0442],
- [-0.8618, -2.1046, -0.4949, 1.0718],
- [ 0.7216, -0.7068, -1.0396, 0.2719],
- [-0.425 , 0.567 , 0.2762, -1.0874],
- [-0.6737, 0.1136, -1.4784, 0.525 ]])
For df2
, the DataFrame
with multiple dtypes,DataFrame.to_numpy()
is relatively expensive.
- In [18]: df2.to_numpy()
- Out[18]:
- array([[1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
- [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo'],
- [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'test', 'foo'],
- [1.0, Timestamp('2013-01-02 00:00:00'), 1.0, 3, 'train', 'foo']],
- dtype=object)
Note
DataFrame.to_numpy()
does not include the index or columnlabels in the output.
describe()
shows a quick statistic summary of your data:
- In [19]: df.describe()
- Out[19]:
- A B C D
- count 6.000000 6.000000 6.000000 6.000000
- mean 0.073711 -0.431125 -0.687758 -0.233103
- std 0.843157 0.922818 0.779887 0.973118
- min -0.861849 -2.104569 -1.509059 -1.135632
- 25% -0.611510 -0.600794 -1.368714 -1.076610
- 50% 0.022070 -0.228039 -0.767252 -0.386188
- 75% 0.658444 0.041933 -0.034326 0.461706
- max 1.212112 0.567020 0.276232 1.071804
Transposing your data:
- In [20]: df.T
- Out[20]:
- 2013-01-01 2013-01-02 2013-01-03 2013-01-04 2013-01-05 2013-01-06
- A 0.469112 1.212112 -0.861849 0.721555 -0.424972 -0.673690
- B -0.282863 -0.173215 -2.104569 -0.706771 0.567020 0.113648
- C -1.509059 0.119209 -0.494929 -1.039575 0.276232 -1.478427
- D -1.135632 -1.044236 1.071804 0.271860 -1.087401 0.524988
Sorting by an axis:
- In [21]: df.sort_index(axis=1, ascending=False)
- Out[21]:
- D C B A
- 2013-01-01 -1.135632 -1.509059 -0.282863 0.469112
- 2013-01-02 -1.044236 0.119209 -0.173215 1.212112
- 2013-01-03 1.071804 -0.494929 -2.104569 -0.861849
- 2013-01-04 0.271860 -1.039575 -0.706771 0.721555
- 2013-01-05 -1.087401 0.276232 0.567020 -0.424972
- 2013-01-06 0.524988 -1.478427 0.113648 -0.673690
Sorting by values:
- In [22]: df.sort_values(by='B')
- Out[22]:
- A B C D
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-06 -0.673690 0.113648 -1.478427 0.524988
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401
Selection
Note
While standard Python / Numpy expressions for selecting and setting areintuitive and come in handy for interactive work, for production code, werecommend the optimized pandas data access methods, .at
, .iat
,.loc
and .iloc
.
See the indexing documentation Indexing and Selecting Data and MultiIndex / Advanced Indexing.
Getting
Selecting a single column, which yields a Series
,equivalent to df.A
:
- In [23]: df['A']
- Out[23]:
- 2013-01-01 0.469112
- 2013-01-02 1.212112
- 2013-01-03 -0.861849
- 2013-01-04 0.721555
- 2013-01-05 -0.424972
- 2013-01-06 -0.673690
- Freq: D, Name: A, dtype: float64
Selecting via []
, which slices the rows.
- In [24]: df[0:3]
- Out[24]:
- A B C D
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- In [25]: df['20130102':'20130104']
- Out[25]:
- A B C D
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
Selection by label
See more in Selection by Label.
For getting a cross section using a label:
- In [26]: df.loc[dates[0]]
- Out[26]:
- A 0.469112
- B -0.282863
- C -1.509059
- D -1.135632
- Name: 2013-01-01 00:00:00, dtype: float64
Selecting on a multi-axis by label:
- In [27]: df.loc[:, ['A', 'B']]
- Out[27]:
- A B
- 2013-01-01 0.469112 -0.282863
- 2013-01-02 1.212112 -0.173215
- 2013-01-03 -0.861849 -2.104569
- 2013-01-04 0.721555 -0.706771
- 2013-01-05 -0.424972 0.567020
- 2013-01-06 -0.673690 0.113648
Showing label slicing, both endpoints are included:
- In [28]: df.loc['20130102':'20130104', ['A', 'B']]
- Out[28]:
- A B
- 2013-01-02 1.212112 -0.173215
- 2013-01-03 -0.861849 -2.104569
- 2013-01-04 0.721555 -0.706771
Reduction in the dimensions of the returned object:
- In [29]: df.loc['20130102', ['A', 'B']]
- Out[29]:
- A 1.212112
- B -0.173215
- Name: 2013-01-02 00:00:00, dtype: float64
For getting a scalar value:
- In [30]: df.loc[dates[0], 'A']
- Out[30]: 0.4691122999071863
For getting fast access to a scalar (equivalent to the prior method):
- In [31]: df.at[dates[0], 'A']
- Out[31]: 0.4691122999071863
Selection by position
See more in Selection by Position.
Select via the position of the passed integers:
- In [32]: df.iloc[3]
- Out[32]:
- A 0.721555
- B -0.706771
- C -1.039575
- D 0.271860
- Name: 2013-01-04 00:00:00, dtype: float64
By integer slices, acting similar to numpy/python:
- In [33]: df.iloc[3:5, 0:2]
- Out[33]:
- A B
- 2013-01-04 0.721555 -0.706771
- 2013-01-05 -0.424972 0.567020
By lists of integer position locations, similar to the numpy/python style:
- In [34]: df.iloc[[1, 2, 4], [0, 2]]
- Out[34]:
- A C
- 2013-01-02 1.212112 0.119209
- 2013-01-03 -0.861849 -0.494929
- 2013-01-05 -0.424972 0.276232
For slicing rows explicitly:
- In [35]: df.iloc[1:3, :]
- Out[35]:
- A B C D
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804
For slicing columns explicitly:
- In [36]: df.iloc[:, 1:3]
- Out[36]:
- B C
- 2013-01-01 -0.282863 -1.509059
- 2013-01-02 -0.173215 0.119209
- 2013-01-03 -2.104569 -0.494929
- 2013-01-04 -0.706771 -1.039575
- 2013-01-05 0.567020 0.276232
- 2013-01-06 0.113648 -1.478427
For getting a value explicitly:
- In [37]: df.iloc[1, 1]
- Out[37]: -0.17321464905330858
For getting fast access to a scalar (equivalent to the prior method):
- In [38]: df.iat[1, 1]
- Out[38]: -0.17321464905330858
Boolean indexing
Using a single column’s values to select data.
- In [39]: df[df.A > 0]
- Out[39]:
- A B C D
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860
Selecting values from a DataFrame where a boolean condition is met.
- In [40]: df[df > 0]
- Out[40]:
- A B C D
- 2013-01-01 0.469112 NaN NaN NaN
- 2013-01-02 1.212112 NaN 0.119209 NaN
- 2013-01-03 NaN NaN NaN 1.071804
- 2013-01-04 0.721555 NaN NaN 0.271860
- 2013-01-05 NaN 0.567020 0.276232 NaN
- 2013-01-06 NaN 0.113648 NaN 0.524988
Using the isin()
method for filtering:
- In [41]: df2 = df.copy()
- In [42]: df2['E'] = ['one', 'one', 'two', 'three', 'four', 'three']
- In [43]: df2
- Out[43]:
- A B C D E
- 2013-01-01 0.469112 -0.282863 -1.509059 -1.135632 one
- 2013-01-02 1.212112 -0.173215 0.119209 -1.044236 one
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
- 2013-01-04 0.721555 -0.706771 -1.039575 0.271860 three
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
- 2013-01-06 -0.673690 0.113648 -1.478427 0.524988 three
- In [44]: df2[df2['E'].isin(['two', 'four'])]
- Out[44]:
- A B C D E
- 2013-01-03 -0.861849 -2.104569 -0.494929 1.071804 two
- 2013-01-05 -0.424972 0.567020 0.276232 -1.087401 four
Setting
Setting a new column automatically aligns the databy the indexes.
- In [45]: s1 = pd.Series([1, 2, 3, 4, 5, 6], index=pd.date_range('20130102', periods=6))
- In [46]: s1
- Out[46]:
- 2013-01-02 1
- 2013-01-03 2
- 2013-01-04 3
- 2013-01-05 4
- 2013-01-06 5
- 2013-01-07 6
- Freq: D, dtype: int64
- In [47]: df['F'] = s1
Setting values by label:
- In [48]: df.at[dates[0], 'A'] = 0
Setting values by position:
- In [49]: df.iat[0, 1] = 0
Setting by assigning with a NumPy array:
- In [50]: df.loc[:, 'D'] = np.array([5] * len(df))
The result of the prior setting operations.
- In [51]: df
- Out[51]:
- A B C D F
- 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
- 2013-01-02 1.212112 -0.173215 0.119209 5 1.0
- 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0
- 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0
- 2013-01-05 -0.424972 0.567020 0.276232 5 4.0
- 2013-01-06 -0.673690 0.113648 -1.478427 5 5.0
A where
operation with setting.
- In [52]: df2 = df.copy()
- In [53]: df2[df2 > 0] = -df2
- In [54]: df2
- Out[54]:
- A B C D F
- 2013-01-01 0.000000 0.000000 -1.509059 -5 NaN
- 2013-01-02 -1.212112 -0.173215 -0.119209 -5 -1.0
- 2013-01-03 -0.861849 -2.104569 -0.494929 -5 -2.0
- 2013-01-04 -0.721555 -0.706771 -1.039575 -5 -3.0
- 2013-01-05 -0.424972 -0.567020 -0.276232 -5 -4.0
- 2013-01-06 -0.673690 -0.113648 -1.478427 -5 -5.0
Missing data
pandas primarily uses the value np.nan
to represent missing data. It is bydefault not included in computations. See the Missing Data section.
Reindexing allows you to change/add/delete the index on a specified axis. Thisreturns a copy of the data.
- In [55]: df1 = df.reindex(index=dates[0:4], columns=list(df.columns) + ['E'])
- In [56]: df1.loc[dates[0]:dates[1], 'E'] = 1
- In [57]: df1
- Out[57]:
- A B C D F E
- 2013-01-01 0.000000 0.000000 -1.509059 5 NaN 1.0
- 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
- 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 NaN
- 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 NaN
To drop any rows that have missing data.
- In [58]: df1.dropna(how='any')
- Out[58]:
- A B C D F E
- 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
Filling missing data.
- In [59]: df1.fillna(value=5)
- Out[59]:
- A B C D F E
- 2013-01-01 0.000000 0.000000 -1.509059 5 5.0 1.0
- 2013-01-02 1.212112 -0.173215 0.119209 5 1.0 1.0
- 2013-01-03 -0.861849 -2.104569 -0.494929 5 2.0 5.0
- 2013-01-04 0.721555 -0.706771 -1.039575 5 3.0 5.0
To get the boolean mask where values are nan
.
- In [60]: pd.isna(df1)
- Out[60]:
- A B C D F E
- 2013-01-01 False False False False True False
- 2013-01-02 False False False False False False
- 2013-01-03 False False False False False True
- 2013-01-04 False False False False False True
Operations
See the Basic section on Binary Ops.
Stats
Operations in general exclude missing data.
Performing a descriptive statistic:
- In [61]: df.mean()
- Out[61]:
- A -0.004474
- B -0.383981
- C -0.687758
- D 5.000000
- F 3.000000
- dtype: float64
Same operation on the other axis:
- In [62]: df.mean(1)
- Out[62]:
- 2013-01-01 0.872735
- 2013-01-02 1.431621
- 2013-01-03 0.707731
- 2013-01-04 1.395042
- 2013-01-05 1.883656
- 2013-01-06 1.592306
- Freq: D, dtype: float64
Operating with objects that have different dimensionality and need alignment.In addition, pandas automatically broadcasts along the specified dimension.
- In [63]: s = pd.Series([1, 3, 5, np.nan, 6, 8], index=dates).shift(2)
- In [64]: s
- Out[64]:
- 2013-01-01 NaN
- 2013-01-02 NaN
- 2013-01-03 1.0
- 2013-01-04 3.0
- 2013-01-05 5.0
- 2013-01-06 NaN
- Freq: D, dtype: float64
- In [65]: df.sub(s, axis='index')
- Out[65]:
- A B C D F
- 2013-01-01 NaN NaN NaN NaN NaN
- 2013-01-02 NaN NaN NaN NaN NaN
- 2013-01-03 -1.861849 -3.104569 -1.494929 4.0 1.0
- 2013-01-04 -2.278445 -3.706771 -4.039575 2.0 0.0
- 2013-01-05 -5.424972 -4.432980 -4.723768 0.0 -1.0
- 2013-01-06 NaN NaN NaN NaN NaN
Apply
Applying functions to the data:
- In [66]: df.apply(np.cumsum)
- Out[66]:
- A B C D F
- 2013-01-01 0.000000 0.000000 -1.509059 5 NaN
- 2013-01-02 1.212112 -0.173215 -1.389850 10 1.0
- 2013-01-03 0.350263 -2.277784 -1.884779 15 3.0
- 2013-01-04 1.071818 -2.984555 -2.924354 20 6.0
- 2013-01-05 0.646846 -2.417535 -2.648122 25 10.0
- 2013-01-06 -0.026844 -2.303886 -4.126549 30 15.0
- In [67]: df.apply(lambda x: x.max() - x.min())
- Out[67]:
- A 2.073961
- B 2.671590
- C 1.785291
- D 0.000000
- F 4.000000
- dtype: float64
Histogramming
See more at Histogramming and Discretization.
- In [68]: s = pd.Series(np.random.randint(0, 7, size=10))
- In [69]: s
- Out[69]:
- 0 4
- 1 2
- 2 1
- 3 2
- 4 6
- 5 4
- 6 4
- 7 6
- 8 4
- 9 4
- dtype: int64
- In [70]: s.value_counts()
- Out[70]:
- 4 5
- 6 2
- 2 2
- 1 1
- dtype: int64
String Methods
Series is equipped with a set of string processing methods in the str_attribute that make it easy to operate on each element of the array, as in thecode snippet below. Note that pattern-matching in _str generally uses regularexpressions by default (and insome cases always uses them). See more at Vectorized String Methods.
- In [71]: s = pd.Series(['A', 'B', 'C', 'Aaba', 'Baca', np.nan, 'CABA', 'dog', 'cat'])
- In [72]: s.str.lower()
- Out[72]:
- 0 a
- 1 b
- 2 c
- 3 aaba
- 4 baca
- 5 NaN
- 6 caba
- 7 dog
- 8 cat
- dtype: object
Merge
Concat
pandas provides various facilities for easily combining together Series andDataFrame objects with various kinds of set logic for the indexesand relational algebra functionality in the case of join / merge-typeoperations.
See the Merging section.
Concatenating pandas objects together with concat()
:
- In [73]: df = pd.DataFrame(np.random.randn(10, 4))
- In [74]: df
- Out[74]:
- 0 1 2 3
- 0 -0.548702 1.467327 -1.015962 -0.483075
- 1 1.637550 -1.217659 -0.291519 -1.745505
- 2 -0.263952 0.991460 -0.919069 0.266046
- 3 -0.709661 1.669052 1.037882 -1.705775
- 4 -0.919854 -0.042379 1.247642 -0.009920
- 5 0.290213 0.495767 0.362949 1.548106
- 6 -1.131345 -0.089329 0.337863 -0.945867
- 7 -0.932132 1.956030 0.017587 -0.016692
- 8 -0.575247 0.254161 -1.143704 0.215897
- 9 1.193555 -0.077118 -0.408530 -0.862495
- # break it into pieces
- In [75]: pieces = [df[:3], df[3:7], df[7:]]
- In [76]: pd.concat(pieces)
- Out[76]:
- 0 1 2 3
- 0 -0.548702 1.467327 -1.015962 -0.483075
- 1 1.637550 -1.217659 -0.291519 -1.745505
- 2 -0.263952 0.991460 -0.919069 0.266046
- 3 -0.709661 1.669052 1.037882 -1.705775
- 4 -0.919854 -0.042379 1.247642 -0.009920
- 5 0.290213 0.495767 0.362949 1.548106
- 6 -1.131345 -0.089329 0.337863 -0.945867
- 7 -0.932132 1.956030 0.017587 -0.016692
- 8 -0.575247 0.254161 -1.143704 0.215897
- 9 1.193555 -0.077118 -0.408530 -0.862495
Join
SQL style merges. See the Database style joining section.
- In [77]: left = pd.DataFrame({'key': ['foo', 'foo'], 'lval': [1, 2]})
- In [78]: right = pd.DataFrame({'key': ['foo', 'foo'], 'rval': [4, 5]})
- In [79]: left
- Out[79]:
- key lval
- 0 foo 1
- 1 foo 2
- In [80]: right
- Out[80]:
- key rval
- 0 foo 4
- 1 foo 5
- In [81]: pd.merge(left, right, on='key')
- Out[81]:
- key lval rval
- 0 foo 1 4
- 1 foo 1 5
- 2 foo 2 4
- 3 foo 2 5
Another example that can be given is:
- In [82]: left = pd.DataFrame({'key': ['foo', 'bar'], 'lval': [1, 2]})
- In [83]: right = pd.DataFrame({'key': ['foo', 'bar'], 'rval': [4, 5]})
- In [84]: left
- Out[84]:
- key lval
- 0 foo 1
- 1 bar 2
- In [85]: right
- Out[85]:
- key rval
- 0 foo 4
- 1 bar 5
- In [86]: pd.merge(left, right, on='key')
- Out[86]:
- key lval rval
- 0 foo 1 4
- 1 bar 2 5
Append
Append rows to a dataframe. See the Appendingsection.
- In [87]: df = pd.DataFrame(np.random.randn(8, 4), columns=['A', 'B', 'C', 'D'])
- In [88]: df
- Out[88]:
- A B C D
- 0 1.346061 1.511763 1.627081 -0.990582
- 1 -0.441652 1.211526 0.268520 0.024580
- 2 -1.577585 0.396823 -0.105381 -0.532532
- 3 1.453749 1.208843 -0.080952 -0.264610
- 4 -0.727965 -0.589346 0.339969 -0.693205
- 5 -0.339355 0.593616 0.884345 1.591431
- 6 0.141809 0.220390 0.435589 0.192451
- 7 -0.096701 0.803351 1.715071 -0.708758
- In [89]: s = df.iloc[3]
- In [90]: df.append(s, ignore_index=True)
- Out[90]:
- A B C D
- 0 1.346061 1.511763 1.627081 -0.990582
- 1 -0.441652 1.211526 0.268520 0.024580
- 2 -1.577585 0.396823 -0.105381 -0.532532
- 3 1.453749 1.208843 -0.080952 -0.264610
- 4 -0.727965 -0.589346 0.339969 -0.693205
- 5 -0.339355 0.593616 0.884345 1.591431
- 6 0.141809 0.220390 0.435589 0.192451
- 7 -0.096701 0.803351 1.715071 -0.708758
- 8 1.453749 1.208843 -0.080952 -0.264610
Grouping
By “group by” we are referring to a process involving one or more of thefollowing steps:
- Splitting the data into groups based on some criteria
- Applying a function to each group independently
- Combining the results into a data structure
See the Grouping section.
- In [91]: df = pd.DataFrame({'A': ['foo', 'bar', 'foo', 'bar',
- ....: 'foo', 'bar', 'foo', 'foo'],
- ....: 'B': ['one', 'one', 'two', 'three',
- ....: 'two', 'two', 'one', 'three'],
- ....: 'C': np.random.randn(8),
- ....: 'D': np.random.randn(8)})
- ....:
- In [92]: df
- Out[92]:
- A B C D
- 0 foo one -1.202872 -0.055224
- 1 bar one -1.814470 2.395985
- 2 foo two 1.018601 1.552825
- 3 bar three -0.595447 0.166599
- 4 foo two 1.395433 0.047609
- 5 bar two -0.392670 -0.136473
- 6 foo one 0.007207 -0.561757
- 7 foo three 1.928123 -1.623033
Grouping and then applying the sum()
function to the resultinggroups.
- In [93]: df.groupby('A').sum()
- Out[93]:
- C D
- A
- bar -2.802588 2.42611
- foo 3.146492 -0.63958
Grouping by multiple columns forms a hierarchical index, and again we canapply the sum
function.
- In [94]: df.groupby(['A', 'B']).sum()
- Out[94]:
- C D
- A B
- bar one -1.814470 2.395985
- three -0.595447 0.166599
- two -0.392670 -0.136473
- foo one -1.195665 -0.616981
- three 1.928123 -1.623033
- two 2.414034 1.600434
Reshaping
See the sections on Hierarchical Indexing andReshaping.
Stack
- In [95]: tuples = list(zip(*[['bar', 'bar', 'baz', 'baz',
- ....: 'foo', 'foo', 'qux', 'qux'],
- ....: ['one', 'two', 'one', 'two',
- ....: 'one', 'two', 'one', 'two']]))
- ....:
- In [96]: index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
- In [97]: df = pd.DataFrame(np.random.randn(8, 2), index=index, columns=['A', 'B'])
- In [98]: df2 = df[:4]
- In [99]: df2
- Out[99]:
- A B
- first second
- bar one 0.029399 -0.542108
- two 0.282696 -0.087302
- baz one -1.575170 1.771208
- two 0.816482 1.100230
The stack()
method “compresses” a level in the DataFrame’scolumns.
- In [100]: stacked = df2.stack()
- In [101]: stacked
- Out[101]:
- first second
- bar one A 0.029399
- B -0.542108
- two A 0.282696
- B -0.087302
- baz one A -1.575170
- B 1.771208
- two A 0.816482
- B 1.100230
- dtype: float64
With a “stacked” DataFrame or Series (having a MultiIndex
as theindex
), the inverse operation of stack()
isunstack()
, which by default unstacks the last level:
- In [102]: stacked.unstack()
- Out[102]:
- A B
- first second
- bar one 0.029399 -0.542108
- two 0.282696 -0.087302
- baz one -1.575170 1.771208
- two 0.816482 1.100230
- In [103]: stacked.unstack(1)
- Out[103]:
- second one two
- first
- bar A 0.029399 0.282696
- B -0.542108 -0.087302
- baz A -1.575170 0.816482
- B 1.771208 1.100230
- In [104]: stacked.unstack(0)
- Out[104]:
- first bar baz
- second
- one A 0.029399 -1.575170
- B -0.542108 1.771208
- two A 0.282696 0.816482
- B -0.087302 1.100230
Pivot tables
See the section on Pivot Tables.
- In [105]: df = pd.DataFrame({'A': ['one', 'one', 'two', 'three'] * 3,
- .....: 'B': ['A', 'B', 'C'] * 4,
- .....: 'C': ['foo', 'foo', 'foo', 'bar', 'bar', 'bar'] * 2,
- .....: 'D': np.random.randn(12),
- .....: 'E': np.random.randn(12)})
- .....:
- In [106]: df
- Out[106]:
- A B C D E
- 0 one A foo 1.418757 -0.179666
- 1 one B foo -1.879024 1.291836
- 2 two C foo 0.536826 -0.009614
- 3 three A bar 1.006160 0.392149
- 4 one B bar -0.029716 0.264599
- 5 one C bar -1.146178 -0.057409
- 6 two A foo 0.100900 -1.425638
- 7 three B foo -1.035018 1.024098
- 8 one C foo 0.314665 -0.106062
- 9 one A bar -0.773723 1.824375
- 10 two B bar -1.170653 0.595974
- 11 three C bar 0.648740 1.167115
We can produce pivot tables from this data very easily:
- In [107]: pd.pivot_table(df, values='D', index=['A', 'B'], columns=['C'])
- Out[107]:
- C bar foo
- A B
- one A -0.773723 1.418757
- B -0.029716 -1.879024
- C -1.146178 0.314665
- three A 1.006160 NaN
- B NaN -1.035018
- C 0.648740 NaN
- two A NaN 0.100900
- B -1.170653 NaN
- C NaN 0.536826
Time series
pandas has simple, powerful, and efficient functionality for performingresampling operations during frequency conversion (e.g., converting secondlydata into 5-minutely data). This is extremely common in, but not limited to,financial applications. See the Time Series section.
- In [108]: rng = pd.date_range('1/1/2012', periods=100, freq='S')
- In [109]: ts = pd.Series(np.random.randint(0, 500, len(rng)), index=rng)
- In [110]: ts.resample('5Min').sum()
- Out[110]:
- 2012-01-01 25083
- Freq: 5T, dtype: int64
Time zone representation:
- In [111]: rng = pd.date_range('3/6/2012 00:00', periods=5, freq='D')
- In [112]: ts = pd.Series(np.random.randn(len(rng)), rng)
- In [113]: ts
- Out[113]:
- 2012-03-06 0.464000
- 2012-03-07 0.227371
- 2012-03-08 -0.496922
- 2012-03-09 0.306389
- 2012-03-10 -2.290613
- Freq: D, dtype: float64
- In [114]: ts_utc = ts.tz_localize('UTC')
- In [115]: ts_utc
- Out[115]:
- 2012-03-06 00:00:00+00:00 0.464000
- 2012-03-07 00:00:00+00:00 0.227371
- 2012-03-08 00:00:00+00:00 -0.496922
- 2012-03-09 00:00:00+00:00 0.306389
- 2012-03-10 00:00:00+00:00 -2.290613
- Freq: D, dtype: float64
Converting to another time zone:
- In [116]: ts_utc.tz_convert('US/Eastern')
- Out[116]:
- 2012-03-05 19:00:00-05:00 0.464000
- 2012-03-06 19:00:00-05:00 0.227371
- 2012-03-07 19:00:00-05:00 -0.496922
- 2012-03-08 19:00:00-05:00 0.306389
- 2012-03-09 19:00:00-05:00 -2.290613
- Freq: D, dtype: float64
Converting between time span representations:
- In [117]: rng = pd.date_range('1/1/2012', periods=5, freq='M')
- In [118]: ts = pd.Series(np.random.randn(len(rng)), index=rng)
- In [119]: ts
- Out[119]:
- 2012-01-31 -1.134623
- 2012-02-29 -1.561819
- 2012-03-31 -0.260838
- 2012-04-30 0.281957
- 2012-05-31 1.523962
- Freq: M, dtype: float64
- In [120]: ps = ts.to_period()
- In [121]: ps
- Out[121]:
- 2012-01 -1.134623
- 2012-02 -1.561819
- 2012-03 -0.260838
- 2012-04 0.281957
- 2012-05 1.523962
- Freq: M, dtype: float64
- In [122]: ps.to_timestamp()
- Out[122]:
- 2012-01-01 -1.134623
- 2012-02-01 -1.561819
- 2012-03-01 -0.260838
- 2012-04-01 0.281957
- 2012-05-01 1.523962
- Freq: MS, dtype: float64
Converting between period and timestamp enables some convenient arithmeticfunctions to be used. In the following example, we convert a quarterlyfrequency with year ending in November to 9am of the end of the month followingthe quarter end:
- In [123]: prng = pd.period_range('1990Q1', '2000Q4', freq='Q-NOV')
- In [124]: ts = pd.Series(np.random.randn(len(prng)), prng)
- In [125]: ts.index = (prng.asfreq('M', 'e') + 1).asfreq('H', 's') + 9
- In [126]: ts.head()
- Out[126]:
- 1990-03-01 09:00 -0.902937
- 1990-06-01 09:00 0.068159
- 1990-09-01 09:00 -0.057873
- 1990-12-01 09:00 -0.368204
- 1991-03-01 09:00 -1.144073
- Freq: H, dtype: float64
Categoricals
pandas can include categorical data in a DataFrame
. For full docs, see thecategorical introduction and the API documentation.
- In [127]: df = pd.DataFrame({"id": [1, 2, 3, 4, 5, 6],
- .....: "raw_grade": ['a', 'b', 'b', 'a', 'a', 'e']})
- .....:
Convert the raw grades to a categorical data type.
- In [128]: df["grade"] = df["raw_grade"].astype("category")
- In [129]: df["grade"]
- Out[129]:
- 0 a
- 1 b
- 2 b
- 3 a
- 4 a
- 5 e
- Name: grade, dtype: category
- Categories (3, object): [a, b, e]
Rename the categories to more meaningful names (assigning toSeries.cat.categories
is inplace!).
- In [130]: df["grade"].cat.categories = ["very good", "good", "very bad"]
Reorder the categories and simultaneously add the missing categories (methods under Series.cat
return a new Series
by default).
- In [131]: df["grade"] = df["grade"].cat.set_categories(["very bad", "bad", "medium",
- .....: "good", "very good"])
- .....:
- In [132]: df["grade"]
- Out[132]:
- 0 very good
- 1 good
- 2 good
- 3 very good
- 4 very good
- 5 very bad
- Name: grade, dtype: category
- Categories (5, object): [very bad, bad, medium, good, very good]
Sorting is per order in the categories, not lexical order.
- In [133]: df.sort_values(by="grade")
- Out[133]:
- id raw_grade grade
- 5 6 e very bad
- 1 2 b good
- 2 3 b good
- 0 1 a very good
- 3 4 a very good
- 4 5 a very good
Grouping by a categorical column also shows empty categories.
- In [134]: df.groupby("grade").size()
- Out[134]:
- grade
- very bad 1
- bad 0
- medium 0
- good 2
- very good 3
- dtype: int64
Plotting
See the Plotting docs.
- In [135]: ts = pd.Series(np.random.randn(1000),
- .....: index=pd.date_range('1/1/2000', periods=1000))
- .....:
- In [136]: ts = ts.cumsum()
- In [137]: ts.plot()
- Out[137]: <matplotlib.axes._subplots.AxesSubplot at 0x7f45409e1690>
On a DataFrame, the plot()
method is a convenience to plot allof the columns with labels:
- In [138]: df = pd.DataFrame(np.random.randn(1000, 4), index=ts.index,
- .....: columns=['A', 'B', 'C', 'D'])
- .....:
- In [139]: df = df.cumsum()
- In [140]: plt.figure()
- Out[140]: <Figure size 640x480 with 0 Axes>
- In [141]: df.plot()
- Out[141]: <matplotlib.axes._subplots.AxesSubplot at 0x7f453cb4dc50>
- In [142]: plt.legend(loc='best')
- Out[142]: <matplotlib.legend.Legend at 0x7f453cacfc90>
Getting data in/out
CSV
- In [143]: df.to_csv('foo.csv')
- In [144]: pd.read_csv('foo.csv')
- Out[144]:
- Unnamed: 0 A B C D
- 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
- 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
- 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
- 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
- 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
- .. ... ... ... ... ...
- 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
- 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
- 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
- 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
- 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
- [1000 rows x 5 columns]
HDF5
Reading and writing to HDFStores.
Writing to a HDF5 Store.
- In [145]: df.to_hdf('foo.h5', 'df')
Reading from a HDF5 Store.
- In [146]: pd.read_hdf('foo.h5', 'df')
- Out[146]:
- A B C D
- 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
- 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
- 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
- 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
- 2000-01-05 0.578117 0.511371 0.103552 -2.428202
- ... ... ... ... ...
- 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
- 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
- 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
- 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
- 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
- [1000 rows x 4 columns]
Excel
Reading and writing to MS Excel.
Writing to an excel file.
- In [147]: df.to_excel('foo.xlsx', sheet_name='Sheet1')
Reading from an excel file.
- In [148]: pd.read_excel('foo.xlsx', 'Sheet1', index_col=None, na_values=['NA'])
- Out[148]:
- Unnamed: 0 A B C D
- 0 2000-01-01 0.266457 -0.399641 -0.219582 1.186860
- 1 2000-01-02 -1.170732 -0.345873 1.653061 -0.282953
- 2 2000-01-03 -1.734933 0.530468 2.060811 -0.515536
- 3 2000-01-04 -1.555121 1.452620 0.239859 -1.156896
- 4 2000-01-05 0.578117 0.511371 0.103552 -2.428202
- .. ... ... ... ... ...
- 995 2002-09-22 -8.985362 -8.485624 -4.669462 31.367740
- 996 2002-09-23 -9.558560 -8.781216 -4.499815 30.518439
- 997 2002-09-24 -9.902058 -9.340490 -4.386639 30.105593
- 998 2002-09-25 -10.216020 -9.480682 -3.933802 29.758560
- 999 2002-09-26 -11.856774 -10.671012 -3.216025 29.369368
- [1000 rows x 5 columns]
Gotchas
If you are attempting to perform an operation you might see an exception like:
- >>> if pd.Series([False, True, False]):
- ... print("I was true")
- Traceback
- ...
- ValueError: The truth value of an array is ambiguous. Use a.empty, a.any() or a.all().
See Comparisons for an explanation and what to do.
See Gotchas as well.