- 数据帧(DataFrame)
- From dict of Series or dicts
- From dict of ndarrays / lists
- From structured or record array
- From a list of dicts
- From a dict of tuples
- From a Series
- Alternate Constructors
- Column selection, addition, deletion
- Assigning New Columns in Method Chains
- Indexing / Selection
- Data alignment and arithmetic
- Transposing
- DataFrame interoperability with NumPy functions
- Console display
- DataFrame column attribute access and IPython completion
数据帧(DataFrame)
DataFrame is a 2-dimensional labeled data structure with columns of potentially different types. You can think of it like a spreadsheet or SQL table, or a dict of Series objects. It is generally the most commonly used pandas object. Like Series, DataFrame accepts many different kinds of input:
- Dict of 1D ndarrays, lists, dicts, or Series
- 2-D numpy.ndarray
- Structured or record ndarray
- A
Series
- Another
DataFrame
Along with the data, you can optionally pass index (row labels) and columns (column labels) arguments. If you pass an index and / or columns, you are guaranteeing the index and / or columns of the resulting DataFrame. Thus, a dict of Series plus a specific index will discard all data not matching up to the passed index.
If axis labels are not passed, they will be constructed from the input data based on common sense rules.
Note: When the data is a dict, and columns is not specified, the DataFrame columns will be ordered by the dict’s insertion order, if you are using Python version >= 3.6 and Pandas >= 0.23. If you are using Python < 3.6 or Pandas < 0.23, and columns is not specified, the DataFrame columns will be the lexically ordered list of dict keys.
From dict of Series or dicts
The resulting index will be the union of the indexes of the various Series. If there are any nested dicts, these will first be converted to Series. If no columns are passed, the columns will be the ordered list of dict keys.
In [34]: d = {'one' : pd.Series([1., 2., 3.], index=['a', 'b', 'c']),
....: 'two' : pd.Series([1., 2., 3., 4.], index=['a', 'b', 'c', 'd'])}
....:
In [35]: df = pd.DataFrame(d)
In [36]: df
Out[36]:
one two
a 1.0 1.0
b 2.0 2.0
c 3.0 3.0
d NaN 4.0
In [37]: pd.DataFrame(d, index=['d', 'b', 'a'])
Out[37]:
one two
d NaN 4.0
b 2.0 2.0
a 1.0 1.0
In [38]: pd.DataFrame(d, index=['d', 'b', 'a'], columns=['two', 'three'])
Out[38]:
two three
d 4.0 NaN
b 2.0 NaN
a 1.0 NaN
The row and column labels can be accessed respectively by accessing the index and columns attributes:
Note: When a particular set of columns is passed along with a dict of data, the passed columns override the keys in the dict.
In [39]: df.index
Out[39]: Index(['a', 'b', 'c', 'd'], dtype='object')
In [40]: df.columns
Out[40]: Index(['one', 'two'], dtype='object')
From dict of ndarrays / lists
The ndarrays must all be the same length. If an index is passed, it must clearly also be the same length as the arrays. If no index is passed, the result will be range(n)
, where n is the array length.
In [41]: d = {'one' : [1., 2., 3., 4.],
....: 'two' : [4., 3., 2., 1.]}
....:
In [42]: pd.DataFrame(d)
Out[42]:
one two
0 1.0 4.0
1 2.0 3.0
2 3.0 2.0
3 4.0 1.0
In [43]: pd.DataFrame(d, index=['a', 'b', 'c', 'd'])
Out[43]:
one two
a 1.0 4.0
b 2.0 3.0
c 3.0 2.0
d 4.0 1.0
From structured or record array
This case is handled identically to a dict of arrays.
In [44]: data = np.zeros((2,), dtype=[('A', 'i4'),('B', 'f4'),('C', 'a10')])
In [45]: data[:] = [(1,2.,'Hello'), (2,3.,"World")]
In [46]: pd.DataFrame(data)
Out[46]:
A B C
0 1 2.0 b'Hello'
1 2 3.0 b'World'
In [47]: pd.DataFrame(data, index=['first', 'second'])
Out[47]:
A B C
first 1 2.0 b'Hello'
second 2 3.0 b'World'
In [48]: pd.DataFrame(data, columns=['C', 'A', 'B'])
Out[48]:
C A B
0 b'Hello' 1 2.0
1 b'World' 2 3.0
Note:DataFrame is not intended to work exactly like a 2-dimensional NumPy ndarray.
From a list of dicts
In [49]: data2 = [{'a': 1, 'b': 2}, {'a': 5, 'b': 10, 'c': 20}]
In [50]: pd.DataFrame(data2)
Out[50]:
a b c
0 1 2 NaN
1 5 10 20.0
In [51]: pd.DataFrame(data2, index=['first', 'second'])
Out[51]:
a b c
first 1 2 NaN
second 5 10 20.0
In [52]: pd.DataFrame(data2, columns=['a', 'b'])
Out[52]:
a b
0 1 2
1 5 10
From a dict of tuples
You can automatically create a multi-indexed frame by passing a tuples dictionary.
In [53]: pd.DataFrame({('a', 'b'): {('A', 'B'): 1, ('A', 'C'): 2},
....: ('a', 'a'): {('A', 'C'): 3, ('A', 'B'): 4},
....: ('a', 'c'): {('A', 'B'): 5, ('A', 'C'): 6},
....: ('b', 'a'): {('A', 'C'): 7, ('A', 'B'): 8},
....: ('b', 'b'): {('A', 'D'): 9, ('A', 'B'): 10}})
....:
Out[53]:
a b
b a c a b
A B 1.0 4.0 5.0 8.0 10.0
C 2.0 3.0 6.0 7.0 NaN
D NaN NaN NaN NaN 9.0
From a Series
The result will be a DataFrame with the same index as the input Series, and with one column whose name is the original name of the Series (only if no other column name provided).
Missing Data
Much more will be said on this topic in the Missing data section. To construct a DataFrame with missing data, we use np.nan
to represent missing values. Alternatively, you may pass a numpy.MaskedArray
as the data argument to the DataFrame constructor, and its masked entries will be considered missing.
Alternate Constructors
DataFrame.from_dict
DataFrame.from_dict
takes a dict of dicts or a dict of array-like sequences and returns a DataFrame. It operates like the DataFrame
constructor except for the orient
parameter which is 'columns'
by default, but which can be set to 'index'
in order to use the dict keys as row labels.
In [54]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]))
Out[54]:
A B
0 1 4
1 2 5
2 3 6
If you pass orient='index'
, the keys will be the row labels. In this case, you can also pass the desired column names:
In [55]: pd.DataFrame.from_dict(dict([('A', [1, 2, 3]), ('B', [4, 5, 6])]),
....: orient='index', columns=['one', 'two', 'three'])
....:
Out[55]:
one two three
A 1 2 3
B 4 5 6
DataFrame.from_records
DataFrame.from_records
takes a list of tuples or an ndarray with structured dtype. It works analogously to the normal DataFrame
constructor, except that the resulting DataFrame index may be a specific field of the structured dtype. For example:
In [56]: data
Out[56]:
array([(1, 2., b'Hello'), (2, 3., b'World')],
dtype=[('A', '<i4'), ('B', '<f4'), ('C', 'S10')])
In [57]: pd.DataFrame.from_records(data, index='C')
Out[57]:
A B
C
b'Hello' 1 2.0
b'World' 2 3.0
Column selection, addition, deletion
You can treat a DataFrame semantically like a dict of like-indexed Series objects. Getting, setting, and deleting columns works with the same syntax as the analogous dict operations:
In [58]: df['one']
Out[58]:
a 1.0
b 2.0
c 3.0
d NaN
Name: one, dtype: float64
In [59]: df['three'] = df['one'] * df['two']
In [60]: df['flag'] = df['one'] > 2
In [61]: df
Out[61]:
one two three flag
a 1.0 1.0 1.0 False
b 2.0 2.0 4.0 False
c 3.0 3.0 9.0 True
d NaN 4.0 NaN False
Columns can be deleted or popped like with a dict:
In [62]: del df['two']
In [63]: three = df.pop('three')
In [64]: df
Out[64]:
one flag
a 1.0 False
b 2.0 False
c 3.0 True
d NaN False
When inserting a scalar value, it will naturally be propagated to fill the column:
In [65]: df['foo'] = 'bar'
In [66]: df
Out[66]:
one flag foo
a 1.0 False bar
b 2.0 False bar
c 3.0 True bar
d NaN False bar
When inserting a Series that does not have the same index as the DataFrame, it will be conformed to the DataFrame’s index:
In [67]: df['one_trunc'] = df['one'][:2]
In [68]: df
Out[68]:
one flag foo one_trunc
a 1.0 False bar 1.0
b 2.0 False bar 2.0
c 3.0 True bar NaN
d NaN False bar NaN
You can insert raw ndarrays but their length must match the length of the DataFrame’s index.
By default, columns get inserted at the end. The insert
function is available to insert at a particular location in the columns:
In [69]: df.insert(1, 'bar', df['one'])
In [70]: df
Out[70]:
one bar flag foo one_trunc
a 1.0 1.0 False bar 1.0
b 2.0 2.0 False bar 2.0
c 3.0 3.0 True bar NaN
d NaN NaN False bar NaN
Assigning New Columns in Method Chains
Inspired by dplyr’s mutate
verb, DataFrame has an assign() method that allows you to easily create new columns that are potentially derived from existing columns.
In [71]: iris = pd.read_csv('data/iris.data')
In [72]: iris.head()
Out[72]:
SepalLength SepalWidth PetalLength PetalWidth Name
0 5.1 3.5 1.4 0.2 Iris-setosa
1 4.9 3.0 1.4 0.2 Iris-setosa
2 4.7 3.2 1.3 0.2 Iris-setosa
3 4.6 3.1 1.5 0.2 Iris-setosa
4 5.0 3.6 1.4 0.2 Iris-setosa
In [73]: (iris.assign(sepal_ratio = iris['SepalWidth'] / iris['SepalLength'])
....: .head())
....:
Out[73]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.6863
1 4.9 3.0 1.4 0.2 Iris-setosa 0.6122
2 4.7 3.2 1.3 0.2 Iris-setosa 0.6809
3 4.6 3.1 1.5 0.2 Iris-setosa 0.6739
4 5.0 3.6 1.4 0.2 Iris-setosa 0.7200
In the example above, we inserted a precomputed value. We can also pass in a function of one argument to be evaluated on the DataFrame being assigned to.
In [74]: iris.assign(sepal_ratio = lambda x: (x['SepalWidth'] /
....: x['SepalLength'])).head()
....:
Out[74]:
SepalLength SepalWidth PetalLength PetalWidth Name sepal_ratio
0 5.1 3.5 1.4 0.2 Iris-setosa 0.6863
1 4.9 3.0 1.4 0.2 Iris-setosa 0.6122
2 4.7 3.2 1.3 0.2 Iris-setosa 0.6809
3 4.6 3.1 1.5 0.2 Iris-setosa 0.6739
4 5.0 3.6 1.4 0.2 Iris-setosa 0.7200
assign always returns a copy of the data, leaving the original DataFrame untouched.
Passing a callable, as opposed to an actual value to be inserted, is useful when you don’t have a reference to the DataFrame at hand. This is common when using assign
in a chain of operations. For example, we can limit the DataFrame to just those observations with a Sepal Length greater than 5, calculate the ratio, and plot:
In [75]: (iris.query('SepalLength > 5')
....: .assign(SepalRatio = lambda x: x.SepalWidth / x.SepalLength,
....: PetalRatio = lambda x: x.PetalWidth / x.PetalLength)
....: .plot(kind='scatter', x='SepalRatio', y='PetalRatio'))
....:
Out[75]: <matplotlib.axes._subplots.AxesSubplot at 0x7f210fb001d0>
Since a function is passed in, the function is computed on the DataFrame being assigned to. Importantly, this is the DataFrame that’s been filtered to those rows with sepal length greater than 5. The filtering happens first, and then the ratio calculations. This is an example where we didn’t have a reference to the filtered DataFrame available.
The function signature for assign
is simply **kwargs. The keys are the column names for the new fields, and the values are either a value to be inserted (for example, a Series
or NumPy array), or a function of one argument to be called on the DataFrame
. A copy of the original DataFrame is returned, with the new values inserted.
Changed in version 0.23.0.
Starting with Python 3.6 the order of **kwargs is preserved. This allows for dependent assignment, where an expression later in **kwargs can refer to a column created earlier in the same assign().
In [76]: dfa = pd.DataFrame({"A": [1, 2, 3],
....: "B": [4, 5, 6]})
....:
In [77]: dfa.assign(C=lambda x: x['A'] + x['B'],
....: D=lambda x: x['A'] + x['C'])
....:
Out[77]:
A B C D
0 1 4 5 6
1 2 5 7 9
2 3 6 9 12
In the second expression, x['C']
will refer to the newly created column, that’s equal to dfa['A'] + dfa['B']
.
To write code compatible with all versions of Python, split the assignment in two.
In [78]: dependent = pd.DataFrame({"A": [1, 1, 1]})
In [79]: (dependent.assign(A=lambda x: x['A'] + 1)
....: .assign(B=lambda x: x['A'] + 2))
....:
Out[79]:
A B
0 2 4
1 2 4
2 2 4
!Warning
Dependent assignment maybe subtly change the behavior of your code between Python 3.6 and older versions of Python. If you wish write code that supports versions of python before and after 3.6, you’ll need to take care when passing assign expressions that
- Updating an existing column
- Referring to the newly updated column in the same assign For example, we’ll update column “A” and then refer to it when creating “B”.
>>> dependent = pd.DataFrame({"A": [1, 1, 1]})
>>> dependent.assign(A=lambda x: x["A"] + 1,
B=lambda x: x["A"] + 2)
For Python 3.5 and earlier the expression creating B refers to the “old” value of A, [1, 1, 1]. The output is then
A B
0 2 3
1 2 3
2 2 3
For Python 3.6 and later, the expression creating A refers to the “new” value of A, [2, 2, 2], which results in
A B
0 2 4
1 2 4
2 2 4
Indexing / Selection
The basics of indexing are as follows:
Operation | Syntax | Result |
---|---|---|
Select column | df[col] | Series |
Select row by label | df.loc[label] | Series |
Select row by integer location | df.iloc[loc] | Series |
Slice rows | df[5:10] | DataFrame |
Select rows by boolean vector | df[bool_vec] | DataFrame |
Row selection, for example, returns a Series whose index is the columns of the DataFrame:
In [80]: df.loc['b']
Out[80]:
one 2
bar 2
flag False
foo bar
one_trunc 2
Name: b, dtype: object
In [81]: df.iloc[2]
Out[81]:
one 3
bar 3
flag True
foo bar
one_trunc NaN
Name: c, dtype: object
For a more exhaustive treatment of sophisticated label-based indexing and slicing, see the section on indexing. We will address the fundamentals of reindexing / conforming to new sets of labels in the section on reindexing.
Data alignment and arithmetic
Data alignment between DataFrame objects automatically align on both the columns and the index (row labels). Again, the resulting object will have the union of the column and row labels.
In [82]: df = pd.DataFrame(np.random.randn(10, 4), columns=['A', 'B', 'C', 'D'])
In [83]: df2 = pd.DataFrame(np.random.randn(7, 3), columns=['A', 'B', 'C'])
In [84]: df + df2
Out[84]:
A B C D
0 0.0457 -0.0141 1.3809 NaN
1 -0.9554 -1.5010 0.0372 NaN
2 -0.6627 1.5348 -0.8597 NaN
3 -2.4529 1.2373 -0.1337 NaN
4 1.4145 1.9517 -2.3204 NaN
5 -0.4949 -1.6497 -1.0846 NaN
6 -1.0476 -0.7486 -0.8055 NaN
7 NaN NaN NaN NaN
8 NaN NaN NaN NaN
9 NaN NaN NaN NaN
When doing an operation between DataFrame and Series, the default behavior is to align the Series index on the DataFrame columns, thus broadcasting row-wise. For example:
In [85]: df - df.iloc[0]
Out[85]:
A B C D
0 0.0000 0.0000 0.0000 0.0000
1 -1.3593 -0.2487 -0.4534 -1.7547
2 0.2531 0.8297 0.0100 -1.9912
3 -1.3111 0.0543 -1.7249 -1.6205
4 0.5730 1.5007 -0.6761 1.3673
5 -1.7412 0.7820 -1.2416 -2.0531
6 -1.2408 -0.8696 -0.1533 0.0004
7 -0.7439 0.4110 -0.9296 -0.2824
8 -1.1949 1.3207 0.2382 -1.4826
9 2.2938 1.8562 0.7733 -1.4465
In the special case of working with time series data, and the DataFrame index also contains dates, the broadcasting will be column-wise:
In [86]: index = pd.date_range('1/1/2000', periods=8)
In [87]: df = pd.DataFrame(np.random.randn(8, 3), index=index, columns=list('ABC'))
In [88]: df
Out[88]:
A B C
2000-01-01 -1.2268 0.7698 -1.2812
2000-01-02 -0.7277 -0.1213 -0.0979
2000-01-03 0.6958 0.3417 0.9597
2000-01-04 -1.1103 -0.6200 0.1497
2000-01-05 -0.7323 0.6877 0.1764
2000-01-06 0.4033 -0.1550 0.3016
2000-01-07 -2.1799 -1.3698 -0.9542
2000-01-08 1.4627 -1.7432 -0.8266
In [89]: type(df['A'])
Out[89]: pandas.core.series.Series
In [90]: df - df['A']
Out[90]:
2000-01-01 00:00:00 2000-01-02 00:00:00 2000-01-03 00:00:00 \
2000-01-01 NaN NaN NaN
2000-01-02 NaN NaN NaN
2000-01-03 NaN NaN NaN
2000-01-04 NaN NaN NaN
2000-01-05 NaN NaN NaN
2000-01-06 NaN NaN NaN
2000-01-07 NaN NaN NaN
2000-01-08 NaN NaN NaN
2000-01-04 00:00:00 ... 2000-01-08 00:00:00 A B C
2000-01-01 NaN ... NaN NaN NaN NaN
2000-01-02 NaN ... NaN NaN NaN NaN
2000-01-03 NaN ... NaN NaN NaN NaN
2000-01-04 NaN ... NaN NaN NaN NaN
2000-01-05 NaN ... NaN NaN NaN NaN
2000-01-06 NaN ... NaN NaN NaN NaN
2000-01-07 NaN ... NaN NaN NaN NaN
2000-01-08 NaN ... NaN NaN NaN NaN
[8 rows x 11 columns]
!Warning
df - df['A']
is now deprecated and will be removed in a future release. The preferred way to replicate this behavior is
df.sub(df['A'], axis=0)
For explicit control over the matching and broadcasting behavior, see the section on flexible binary operations.
Operations with scalars are just as you would expect:
In [91]: df * 5 + 2
Out[91]:
A B C
2000-01-01 -4.1341 5.8490 -4.4062
2000-01-02 -1.6385 1.3935 1.5106
2000-01-03 5.4789 3.7087 6.7986
2000-01-04 -3.5517 -1.0999 2.7487
2000-01-05 -1.6617 5.4387 2.8822
2000-01-06 4.0165 1.2252 3.5081
2000-01-07 -8.8993 -4.8492 -2.7710
2000-01-08 9.3135 -6.7158 -2.1330
In [92]: 1 / df
Out[92]:
A B C
2000-01-01 -0.8151 1.2990 -0.7805
2000-01-02 -1.3742 -8.2436 -10.2163
2000-01-03 1.4372 2.9262 1.0420
2000-01-04 -0.9006 -1.6130 6.6779
2000-01-05 -1.3655 1.4540 5.6675
2000-01-06 2.4795 -6.4537 3.3154
2000-01-07 -0.4587 -0.7300 -1.0480
2000-01-08 0.6837 -0.5737 -1.2098
In [93]: df ** 4
Out[93]:
A B C
2000-01-01 2.2653 0.3512 2.6948e+00
2000-01-02 0.2804 0.0002 9.1796e-05
2000-01-03 0.2344 0.0136 8.4838e-01
2000-01-04 1.5199 0.1477 5.0286e-04
2000-01-05 0.2876 0.2237 9.6924e-04
2000-01-06 0.0265 0.0006 8.2769e-03
2000-01-07 22.5795 3.5212 8.2903e-01
2000-01-08 4.5774 9.2332 4.6683e-01
Boolean operators work as well:
In [94]: df1 = pd.DataFrame({'a' : [1, 0, 1], 'b' : [0, 1, 1] }, dtype=bool)
In [95]: df2 = pd.DataFrame({'a' : [0, 1, 1], 'b' : [1, 1, 0] }, dtype=bool)
In [96]: df1 & df2
Out[96]:
a b
0 False False
1 False True
2 True False
In [97]: df1 | df2
Out[97]:
a b
0 True True
1 True True
2 True True
In [98]: df1 ^ df2
Out[98]:
a b
0 True True
1 True False
2 False True
In [99]: -df1
Out[99]:
a b
0 False True
1 True False
2 False False
Transposing
To transpose, access the T
attribute (also the transpose
function), similar to an ndarray:
# only show the first 5 rows
In [100]: df[:5].T
Out[100]:
2000-01-01 2000-01-02 2000-01-03 2000-01-04 2000-01-05
A -1.2268 -0.7277 0.6958 -1.1103 -0.7323
B 0.7698 -0.1213 0.3417 -0.6200 0.6877
C -1.2812 -0.0979 0.9597 0.1497 0.1764
DataFrame interoperability with NumPy functions
Elementwise NumPy ufuncs (log, exp, sqrt, …) and various other NumPy functions can be used with no issues on DataFrame, assuming the data within are numeric:
In [101]: np.exp(df)
Out[101]:
A B C
2000-01-01 0.2932 2.1593 0.2777
2000-01-02 0.4830 0.8858 0.9068
2000-01-03 2.0053 1.4074 2.6110
2000-01-04 0.3294 0.5380 1.1615
2000-01-05 0.4808 1.9892 1.1930
2000-01-06 1.4968 0.8565 1.3521
2000-01-07 0.1131 0.2541 0.3851
2000-01-08 4.3176 0.1750 0.4375
In [102]: np.asarray(df)
Out[102]:
array([[-1.2268, 0.7698, -1.2812],
[-0.7277, -0.1213, -0.0979],
[ 0.6958, 0.3417, 0.9597],
[-1.1103, -0.62 , 0.1497],
[-0.7323, 0.6877, 0.1764],
[ 0.4033, -0.155 , 0.3016],
[-2.1799, -1.3698, -0.9542],
[ 1.4627, -1.7432, -0.8266]])
The dot method on DataFrame implements matrix multiplication:
In [103]: df.T.dot(df)
Out[103]:
A B C
A 11.3419 -0.0598 3.0080
B -0.0598 6.5206 2.0833
C 3.0080 2.0833 4.3105
Similarly, the dot method on Series implements dot product:
In [104]: s1 = pd.Series(np.arange(5,10))
In [105]: s1.dot(s1)
Out[105]: 255
DataFrame is not intended to be a drop-in replacement for ndarray as its indexing semantics are quite different in places from a matrix.
Console display
Very large DataFrames will be truncated to display them in the console. You can also get a summary using info(). (Here I am reading a CSV version of the baseball dataset from the plyr R package):
In [106]: baseball = pd.read_csv('data/baseball.csv')
In [107]: print(baseball)
id player year stint ... hbp sh sf gidp
0 88641 womacto01 2006 2 ... 0.0 3.0 0.0 0.0
1 88643 schilcu01 2006 1 ... 0.0 0.0 0.0 0.0
.. ... ... ... ... ... ... ... ... ...
98 89533 aloumo01 2007 1 ... 2.0 0.0 3.0 13.0
99 89534 alomasa02 2007 1 ... 0.0 0.0 0.0 0.0
[100 rows x 23 columns]
In [108]: baseball.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 100 entries, 0 to 99
Data columns (total 23 columns):
id 100 non-null int64
player 100 non-null object
year 100 non-null int64
stint 100 non-null int64
team 100 non-null object
lg 100 non-null object
g 100 non-null int64
ab 100 non-null int64
r 100 non-null int64
h 100 non-null int64
X2b 100 non-null int64
X3b 100 non-null int64
hr 100 non-null int64
rbi 100 non-null float64
sb 100 non-null float64
cs 100 non-null float64
bb 100 non-null int64
so 100 non-null float64
ibb 100 non-null float64
hbp 100 non-null float64
sh 100 non-null float64
sf 100 non-null float64
gidp 100 non-null float64
dtypes: float64(9), int64(11), object(3)
memory usage: 18.0+ KB
However, using to_string
will return a string representation of the DataFrame in tabular form, though it won’t always fit the console width:
In [109]: print(baseball.iloc[-20:, :12].to_string())
id player year stint team lg g ab r h X2b X3b
80 89474 finlest01 2007 1 COL NL 43 94 9 17 3 0
81 89480 embreal01 2007 1 OAK AL 4 0 0 0 0 0
82 89481 edmonji01 2007 1 SLN NL 117 365 39 92 15 2
83 89482 easleda01 2007 1 NYN NL 76 193 24 54 6 0
84 89489 delgaca01 2007 1 NYN NL 139 538 71 139 30 0
85 89493 cormirh01 2007 1 CIN NL 6 0 0 0 0 0
86 89494 coninje01 2007 2 NYN NL 21 41 2 8 2 0
87 89495 coninje01 2007 1 CIN NL 80 215 23 57 11 1
88 89497 clemero02 2007 1 NYA AL 2 2 0 1 0 0
89 89498 claytro01 2007 2 BOS AL 8 6 1 0 0 0
90 89499 claytro01 2007 1 TOR AL 69 189 23 48 14 0
91 89501 cirilje01 2007 2 ARI NL 28 40 6 8 4 0
92 89502 cirilje01 2007 1 MIN AL 50 153 18 40 9 2
93 89521 bondsba01 2007 1 SFN NL 126 340 75 94 14 0
94 89523 biggicr01 2007 1 HOU NL 141 517 68 130 31 3
95 89525 benitar01 2007 2 FLO NL 34 0 0 0 0 0
96 89526 benitar01 2007 1 SFN NL 19 0 0 0 0 0
97 89530 ausmubr01 2007 1 HOU NL 117 349 38 82 16 3
98 89533 aloumo01 2007 1 NYN NL 87 328 51 112 19 1
99 89534 alomasa02 2007 1 NYN NL 8 22 1 3 1 0
Wide DataFrames will be printed across multiple rows by default:
In [110]: pd.DataFrame(np.random.randn(3, 12))
Out[110]:
0 1 2 3 4 5 6 7 8 9 10 11
0 -0.345352 1.314232 0.690579 0.995761 2.396780 0.014871 3.357427 -0.317441 -1.236269 0.896171 -0.487602 -0.082240
1 -2.182937 0.380396 0.084844 0.432390 1.519970 -0.493662 0.600178 0.274230 0.132885 -0.023688 2.410179 1.450520
2 0.206053 -0.251905 -2.213588 1.063327 1.266143 0.299368 -0.863838 0.408204 -1.048089 -0.025747 -0.988387 0.094055
You can change how much to print on a single row by setting the display.width option:
In [111]: pd.set_option('display.width', 40) # default is 80
In [112]: pd.DataFrame(np.random.randn(3, 12))
Out[112]:
0 1 2 3 4 5 6 7 8 9 10 11
0 1.262731 1.289997 0.082423 -0.055758 0.536580 -0.489682 0.369374 -0.034571 -2.484478 -0.281461 0.030711 0.109121
1 1.126203 -0.977349 1.474071 -0.064034 -1.282782 0.781836 -1.071357 0.441153 2.353925 0.583787 0.221471 -0.744471
2 0.758527 1.729689 -0.964980 -0.845696 -1.340896 1.846883 -1.328865 1.682706 -1.717693 0.888782 0.228440 0.901805
You can adjust the max width of the individual columns by setting display.max_colwidth
In [113]: datafile={'filename': ['filename_01','filename_02'],
.....: 'path': ["media/user_name/storage/folder_01/filename_01",
.....: "media/user_name/storage/folder_02/filename_02"]}
.....:
In [114]: pd.set_option('display.max_colwidth',30)
In [115]: pd.DataFrame(datafile)
Out[115]:
filename path
0 filename_01 media/user_name/storage/fo...
1 filename_02 media/user_name/storage/fo...
In [116]: pd.set_option('display.max_colwidth',100)
In [117]: pd.DataFrame(datafile)
Out[117]:
filename path
0 filename_01 media/user_name/storage/folder_01/filename_01
1 filename_02 media/user_name/storage/folder_02/filename_02
You can also disable this feature via the expand_frame_repr option. This will print the table in one block.
DataFrame column attribute access and IPython completion
If a DataFrame column label is a valid Python variable name, the column can be accessed like an attribute:
In [118]: df = pd.DataFrame({'foo1' : np.random.randn(5),
.....: 'foo2' : np.random.randn(5)})
.....:
In [119]: df
Out[119]:
foo1 foo2
0 1.171216 -0.858447
1 0.520260 0.306996
2 -1.197071 -0.028665
3 -1.066969 0.384316
4 -0.303421 1.574159
In [120]: df.foo1
Out[120]:
0 1.171216
1 0.520260
2 -1.197071
3 -1.066969
4 -0.303421
Name: foo1, dtype: float64
The columns are also connected to the IPython completion mechanism so they can be tab-completed:
In [5]: df.fo<TAB>
df.foo1 df.foo2