fluid.initializer
Bilinear
paddle.fluid.initializer.
Bilinear
BilinearInitializer
的别名
BilinearInitializer
- class
paddle.fluid.initializer.
BilinearInitializer
- 该初始化函数用于转置卷积函数,进行上采样。用户通过任意整型因子放大shape为(B,C,H,W)的特征图。用法如下:
代码示例:
- import paddle.fluid as fluid
- factor = 2
- C = 2
- w_attr = fluid.initializer.ParamAttr(
- learning_rate=0.,
- regularizer=fluid.regularizer.L2Decay(0.),
- initializer=fluid.initializer.Bilinear())
- x = fluid.layers.data(name="data", shape=[3, 32, 32],
- dtype="float32")
- conv_up = fluid.layers.conv2d_transpose(
- input=x,
- num_filters=C,
- output_size=None,
- filter_size=2 * factor - factor % 2,
- padding=int(math.ceil((factor - 1) / 2.)),
- stride=factor,
- groups=C,
- param_attr=w_attr,
- bias_attr=False)
num_filters = C和groups = C 表示这是按通道转置的卷积函数。滤波器shape为(C,1,K,K),K为filter_size。该初始化函数为滤波器的每个通道设置(K,K)插值核。输出特征图的最终输出shape为(B,C,factorH,factorW)。注意学习率和权重衰减设为0,以便在训练过程中双线性插值的系数值保持不变
Constant
paddle.fluid.initializer.
Constant
ConstantInitializer
的别名
ConstantInitializer
- class
paddle.fluid.initializer.
ConstantInitializer
(value=0.0, force_cpu=False) 常量初始器
参数:
- value (float) - 用常量初始化变量代码示例
- import paddle.fluid as fluid
- x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
- fc = fluid.layers.fc(input=x, size=10,
- param_attr=fluid.initializer.Constant(value=2.0))
force_init_on_cpu
paddle.fluid.initializer.
force_init_on_cpu
()- 标志位,是否强制在CPU上进行变量初始化。
返回:状态,是否应强制在CPU上强制进行变量初始化
返回类型:bool
代码示例:
- import paddle.fluid as fluid
- if fluid.initializer.force_init_on_cpu():
- step = fluid.layers.create_global_var(shape=[2,3], value=1.0, dtype='float32')
init_on_cpu
paddle.fluid.initializer.
init_on_cpu
()- 强制变量在 cpu 上初始化。
代码示例
- import paddle.fluid as fluid
- with fluid.initializer.init_on_cpu():
- step = fluid.layers.create_global_var(shape=[2,3], value=1.0, dtype='float32')
MSRA
paddle.fluid.initializer.
MSRA
MSRAInitializer
的别名
MSRAInitializer
- class
paddle.fluid.initializer.
MSRAInitializer
(uniform=True, fan_in=None, seed=0) - 实现MSRA初始化(a.k.a. Kaiming初始化)
该类实现权重初始化方法,方法来自Kaiming He,Xiangyu Zhang,Shaoqing Ren 和 Jian Sun所写的论文: Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification 。这是一个鲁棒性特别强的初始化方法,并且适应了非线性激活函数(rectifier nonlinearities)。
在均匀分布中,范围为[-x,x],其中:
在正态分布中,均值为0,标准差为:
- 参数:
- uniform (bool) - 是否用均匀分布或正态分布
- fan_in (float) - MSRAInitializer的fan_in。如果为None,fan_in沿伸自变量
- seed (int) - 随机种子
注解
在大多数情况下推荐设置fan_in为None
代码示例:
- import paddle.fluid as fluid
- x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
- fc = fluid.layers.fc(input=x, size=10, param_attr=fluid.initializer.MSRA(uniform=False))
Normal
paddle.fluid.initializer.
Normal
NormalInitializer
的别名
NormalInitializer
- class
paddle.fluid.initializer.
NormalInitializer
(loc=0.0, scale=1.0, seed=0) 随机正态(高斯)分布初始化器
参数:
- loc (float) - 正态分布的平均值
- scale (float) - 正态分布的标准差
- seed (int) - 随机种子代码示例
- import paddle.fluid as fluid
- x = fluid.layers.data(name="data", shape=[32, 32], dtype="float32")
- fc = fluid.layers.fc(input=x, size=10,
- param_attr=fluid.initializer.Normal(loc=0.0, scale=2.0)
NumpyArrayInitializer
- class
paddle.fluid.initializer.
NumpyArrayInitializer
(value) 使用Numpy型数组来初始化参数变量。
参数:
- value (numpy) - 用于初始化变量的一个Numpy型数组。代码示例
- import paddle.fluid as fluid
- x = fluid.layers.data(name="x", shape=[5], dtype='float32')
- fc = fluid.layers.fc(input=x, size=10,
- param_attr=fluid.initializer.NumpyArrayInitializer(numpy.array([1,2])))
TruncatedNormal
paddle.fluid.initializer.
TruncatedNormal
TruncatedNormalInitializer
的别名
TruncatedNormalInitializer
- class
paddle.fluid.initializer.
TruncatedNormalInitializer
(loc=0.0, scale=1.0, seed=0) Random Truncated Normal(高斯)分布初始化器
参数:
- loc (float) - 正态分布的平均值
- scale (float) - 正态分布的标准差
- seed (int) - 随机种子代码示例
- import paddle.fluid as fluid
- x = fluid.layers.data(name='x', shape=[1], dtype='float32')
- fc = fluid.layers.fc(input=x, size=10,
- param_attr=fluid.initializer.TruncatedNormal(loc=0.0, scale=2.0))
Uniform
paddle.fluid.initializer.
Uniform
UniformInitializer
的别名
UniformInitializer
- class
paddle.fluid.initializer.
UniformInitializer
(low=-1.0, high=1.0, seed=0) 随机均匀分布初始化器
参数:
- low (float) - 下界
- high (float) - 上界
- seed (int) - 随机种子代码示例
- import paddle.fluid as fluid
- x = fluid.layers.data(name='x', shape=[1], dtype='float32')
- fc = fluid.layers.fc(input=x, size=10,
- param_attr=fluid.initializer.Uniform(low=-0.5, high=0.5))
Xavier
paddle.fluid.initializer.
Xavier
XavierInitializer
的别名
XavierInitializer
- class
paddle.fluid.initializer.
XavierInitializer
(uniform=True, fan_in=None, fan_out=None, seed=0) - 该类实现Xavier权重初始化方法( Xavier weight initializer),Xavier权重初始化方法出自Xavier Glorot和Yoshua Bengio的论文 Understanding the difficulty of training deep feedforward neural networks
该初始化函数用于保持所有层的梯度尺度几乎一致。
在均匀分布的情况下,取值范围为[-x,x],其中:
正态分布的情况下,均值为0,标准差为:
- 参数:
- uniform (bool) - 是否用均匀分布或者正态分布
- fan_in (float) - 用于Xavier初始化的fan_in。如果为None,fan_in沿伸自变量
- fan_out (float) - 用于Xavier初始化的fan_out。如果为None,fan_out沿伸自变量
- seed (int) - 随机种子
注解
在大多数情况下推荐将fan_in和fan_out设置为None
代码示例:
- import paddle.fluid as fluid
- queries = fluid.layers.data(name='x', shape=[1], dtype='float32')
- fc = fluid.layers.fc(
- input=queries, size=10,
- param_attr=fluid.initializer.Xavier(uniform=False))