LeNet在手写数字识别上的应用
LeNet网络的实现代码如下:
# 导入需要的包
import paddle
import paddle.fluid as fluid
import numpy as np
from paddle.fluid.dygraph.nn import Conv2D, Pool2D, Linear
# 定义 LeNet 网络结构
class LeNet(fluid.dygraph.Layer):
def __init__(self, name_scope, num_classes=1):
super(LeNet, self).__init__(name_scope)
# 创建卷积和池化层块,每个卷积层使用Sigmoid激活函数,后面跟着一个2x2的池化
self.conv1 = Conv2D(num_channels=1, num_filters=6, filter_size=5, act='sigmoid')
self.pool1 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
self.conv2 = Conv2D(num_channels=6, num_filters=16, filter_size=5, act='sigmoid')
self.pool2 = Pool2D(pool_size=2, pool_stride=2, pool_type='max')
# 创建第3个卷积层
self.conv3 = Conv2D(num_channels=16, num_filters=120, filter_size=4, act='sigmoid')
# 创建全连接层,第一个全连接层的输出神经元个数为64, 第二个全连接层输出神经元个数为分裂标签的类别数
self.fc1 = Linear(input_dim=120, output_dim=64, act='sigmoid')
self.fc2 = Linear(input_dim=64, output_dim=num_classes)
# 网络的前向计算过程
def forward(self, x):
x = self.conv1(x)
x = self.pool1(x)
x = self.conv2(x)
x = self.pool2(x)
x = self.conv3(x)
x = fluid.layers.reshape(x, [x.shape[0], -1])
x = self.fc1(x)
x = self.fc2(x)
return x
下面的程序使用随机数作为输入,查看经过LeNet-5的每一层作用之后,输出数据的形状
# 输入数据形状是 [N, 1, H, W]
# 这里用np.random创建一个随机数组作为输入数据
x = np.random.randn(*[3,1,28,28])
x = x.astype('float32')
with fluid.dygraph.guard():
# 创建LeNet类的实例,指定模型名称和分类的类别数目
m = LeNet('LeNet', num_classes=10)
# 通过调用LeNet从基类继承的sublayers()函数,
# 查看LeNet中所包含的子层
print(m.sublayers())
x = fluid.dygraph.to_variable(x)
for item in m.sublayers():
# item是LeNet类中的一个子层
# 查看经过子层之后的输出数据形状
try:
x = item(x)
except:
x = fluid.layers.reshape(x, [x.shape[0], -1])
x = item(x)
if len(item.parameters())==2:
# 查看卷积和全连接层的数据和参数的形状,
# 其中item.parameters()[0]是权重参数w,item.parameters()[1]是偏置参数b
print(item.full_name(), x.shape, item.parameters()[0].shape, item.parameters()[1].shape)
else:
# 池化层没有参数
print(item.full_name(), x.shape)
- [<paddle.fluid.dygraph.nn.Conv2D object at 0x7f29858ebad0>, <paddle.fluid.dygraph.nn.Pool2D object at 0x7f29858f8110>, <paddle.fluid.dygraph.nn.Conv2D object at 0x7f29858f8230>, <paddle.fluid.dygraph.nn.Pool2D object at 0x7f29858f82f0>, <paddle.fluid.dygraph.nn.Conv2D object at 0x7f29858f8350>, <paddle.fluid.dygraph.nn.Linear object at 0x7f29858f8470>, <paddle.fluid.dygraph.nn.Linear object at 0x7f29858f85f0>]
- conv2d_0 [3, 6, 24, 24] [6, 1, 5, 5] [6]
- pool2d_0 [3, 6, 12, 12]
- conv2d_1 [3, 16, 8, 8] [16, 6, 5, 5] [16]
- pool2d_1 [3, 16, 4, 4]
- conv2d_2 [3, 120, 1, 1] [120, 16, 4, 4] [120]
- linear_0 [3, 64] [120, 64] [64]
- linear_1 [3, 10] [64, 10] [10]
# -*- coding: utf-8 -*-
# LeNet 识别手写数字
import os
import random
import paddle
import paddle.fluid as fluid
import numpy as np
# 定义训练过程
def train(model):
print('start training ... ')
model.train()
epoch_num = 5
opt = fluid.optimizer.Momentum(learning_rate=0.001, momentum=0.9, parameter_list=model.parameters())
# 使用Paddle自带的数据读取器
train_loader = paddle.batch(paddle.dataset.mnist.train(), batch_size=10)
valid_loader = paddle.batch(paddle.dataset.mnist.test(), batch_size=10)
for epoch in range(epoch_num):
for batch_id, data in enumerate(train_loader()):
# 调整输入数据形状和类型
x_data = np.array([item[0] for item in data], dtype='float32').reshape(-1, 1, 28, 28)
y_data = np.array([item[1] for item in data], dtype='int64').reshape(-1, 1)
# 将numpy.ndarray转化成Tensor
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 计算模型输出
logits = model(img)
# 计算损失函数
loss = fluid.layers.softmax_with_cross_entropy(logits, label)
avg_loss = fluid.layers.mean(loss)
if batch_id % 1000 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, avg_loss.numpy()))
avg_loss.backward()
opt.minimize(avg_loss)
model.clear_gradients()
model.eval()
accuracies = []
losses = []
for batch_id, data in enumerate(valid_loader()):
# 调整输入数据形状和类型
x_data = np.array([item[0] for item in data], dtype='float32').reshape(-1, 1, 28, 28)
y_data = np.array([item[1] for item in data], dtype='int64').reshape(-1, 1)
# 将numpy.ndarray转化成Tensor
img = fluid.dygraph.to_variable(x_data)
label = fluid.dygraph.to_variable(y_data)
# 计算模型输出
logits = model(img)
pred = fluid.layers.softmax(logits)
# 计算损失函数
loss = fluid.layers.softmax_with_cross_entropy(logits, label)
acc = fluid.layers.accuracy(pred, label)
accuracies.append(acc.numpy())
losses.append(loss.numpy())
print("[validation] accuracy/loss: {}/{}".format(np.mean(accuracies), np.mean(losses)))
model.train()
# 保存模型参数
fluid.save_dygraph(model.state_dict(), 'mnist')
if __name__ == '__main__':
# 创建模型
with fluid.dygraph.guard():
model = LeNet("LeNet", num_classes=10)
#启动训练过程
train(model)
- start training ...
- Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-images-idx3-ubyte.gz
- Begin to download
- Download finished
- Cache file /home/aistudio/.cache/paddle/dataset/mnist/train-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/train-labels-idx1-ubyte.gz
- Begin to download
- ........
- Download finished
- Cache file /home/aistudio/.cache/paddle/dataset/mnist/t10k-images-idx3-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/t10k-images-idx3-ubyte.gz
- Begin to download
- Download finished
- Cache file /home/aistudio/.cache/paddle/dataset/mnist/t10k-labels-idx1-ubyte.gz not found, downloading https://dataset.bj.bcebos.com/mnist/t10k-labels-idx1-ubyte.gz
- Begin to download
- ..
- Download finished
- epoch: 0, batch_id: 0, loss is: [2.5567963]
- epoch: 0, batch_id: 1000, loss is: [2.2921207]
- epoch: 0, batch_id: 2000, loss is: [2.329089]
- epoch: 0, batch_id: 3000, loss is: [2.2760074]
- epoch: 0, batch_id: 4000, loss is: [2.2555802]
- epoch: 0, batch_id: 5000, loss is: [2.321007]
- [validation] accuracy/loss: 0.3555000126361847/2.2462358474731445
- epoch: 1, batch_id: 0, loss is: [2.2364979]
- epoch: 1, batch_id: 1000, loss is: [2.1558306]
- epoch: 1, batch_id: 2000, loss is: [2.1844604]
- epoch: 1, batch_id: 3000, loss is: [1.7957464]
- epoch: 1, batch_id: 4000, loss is: [1.341808]
- epoch: 1, batch_id: 5000, loss is: [1.6028554]
- [validation] accuracy/loss: 0.7293000221252441/1.0572129487991333
- epoch: 2, batch_id: 0, loss is: [0.85837966]
- epoch: 2, batch_id: 1000, loss is: [0.6425297]
- epoch: 2, batch_id: 2000, loss is: [0.6375253]
- epoch: 2, batch_id: 3000, loss is: [0.40348434]
- epoch: 2, batch_id: 4000, loss is: [0.37101394]
- epoch: 2, batch_id: 5000, loss is: [0.65031445]
- [validation] accuracy/loss: 0.8730000257492065/0.47411048412323
- epoch: 3, batch_id: 0, loss is: [0.35694075]
- epoch: 3, batch_id: 1000, loss is: [0.25489596]
- epoch: 3, batch_id: 2000, loss is: [0.29641074]
- epoch: 3, batch_id: 3000, loss is: [0.18106733]
- epoch: 3, batch_id: 4000, loss is: [0.1899938]
- epoch: 3, batch_id: 5000, loss is: [0.32796213]
- [validation] accuracy/loss: 0.9122999906539917/0.3133768141269684
- epoch: 4, batch_id: 0, loss is: [0.24354395]
- epoch: 4, batch_id: 1000, loss is: [0.16107734]
- epoch: 4, batch_id: 2000, loss is: [0.20161033]
- epoch: 4, batch_id: 3000, loss is: [0.09298491]
- epoch: 4, batch_id: 4000, loss is: [0.11935985]
- epoch: 4, batch_id: 5000, loss is: [0.19827338]
- [validation] accuracy/loss: 0.9312999844551086/0.23992861807346344
通过运行结果可以看出,LeNet在手写数字识别MNIST验证数据集上的准确率高达92%以上。那么对于其它数据集效果如何呢?我们通过眼疾识别数据集iChallenge-PM验证一下。