Assign
class paddle.nn.initializer. Assign ( value, name=None ) [源代码]
该OP使用Numpy数组、Python列表、Tensor来初始化参数。
参数:
value (Tensor|numpy.ndarray|list) - 用于初始化参数的一个Numpy数组、Python列表、Tensor。
name (str,可选)- 具体用法请参见 Name,一般无需设置,默认值为None。
返回:
由Numpy数组、Python列表、Tensor初始化的参数。
代码示例
import paddle
import numpy as np
# numpy array
data_1 = paddle.ones(shape=[1, 2], dtype='float32')
weight_attr_1 = paddle.framework.ParamAttr(
name="linear_weight_1",
initializer=paddle.nn.initializer.Assign(np.array([2, 2])))
bias_attr_1 = paddle.framework.ParamAttr(
name="linear_bias_1",
initializer=paddle.nn.initializer.Assign(np.array([2])))
linear_1 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_1, bias_attr=bias_attr_1)
# linear_1.weight: [2. 2.]
# linear_1.bias: [2.]
res_1 = linear_1(data_1)
# res_1: [6.]
# python list
data_2 = paddle.ones(shape=[1, 2], dtype='float32')
weight_attr_2 = paddle.framework.ParamAttr(
name="linear_weight_2",
initializer=paddle.nn.initializer.Assign([2, 2]))
bias_attr_2 = paddle.framework.ParamAttr(
name="linear_bias_2",
initializer=paddle.nn.initializer.Assign([2]))
linear_2 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_2, bias_attr=bias_attr_2)
# linear_2.weight: [2. 2.]
# linear_2.bias: [2.]
res_2 = linear_2(data_2)
# res_2: [6.]
# tensor
data_3 = paddle.ones(shape=[1, 2], dtype='float32')
weight_attr_3 = paddle.framework.ParamAttr(
name="linear_weight_3",
initializer=paddle.nn.initializer.Assign(paddle.full([2], 2)))
bias_attr_3 = paddle.framework.ParamAttr(
name="linear_bias_3",
initializer=paddle.nn.initializer.Assign(paddle.full([1], 2)))
linear_3 = paddle.nn.Linear(2, 2, weight_attr=weight_attr_3, bias_attr=bias_attr_3)
# linear_3.weight: [2. 2.]
# linear_3.bias: [2.]
res_3 = linear_3(data_3)
# res_3: [6.]