load
paddle.jit. load ( path, **configs ) [源代码]
将接口 paddle.jit.save
或者 paddle.static.save_inference_model
存储的模型载入为 paddle.jit.TranslatedLayer
,用于预测推理或者fine-tune训练。
注解
如果载入的模型是通过 paddle.static.save_inference_model
存储的,在使用它进行fine-tune训练时会存在一些局限: 1. 命令式编程模式不支持 LoDTensor
,所有原先输入变量或者参数依赖于LoD信息的模型暂时无法使用; 2. 所有存储模型的feed变量都需要被传入 Translatedlayer
的forward方法; 3. 原模型变量的 stop_gradient
信息已丢失且无法准确恢复; 4. 原模型参数的 trainable
信息已丢失且无法准确恢复。
参数
path (str) - 载入模型的路径前缀。格式为
dirname/file_prefix
或者file_prefix
。**config (dict, 可选) - 其他用于兼容的载入配置选项。这些选项将来可能被移除,如果不是必须使用,不推荐使用这些配置选项。默认为
None
。目前支持以下配置选项:(1) modelfilename (str) - paddle 1.x版本save_inference_model
接口存储格式的预测模型文件名,原默认文件名为 `_model; (2) params_filename (str) - paddle 1.x版本
save_inference_model` 接口存储格式的参数文件名,没有默认文件名,默认将各个参数分散存储为单独的文件。
返回
TranslatedLayer,一个能够执行存储模型的 Layer
对象。
代码示例
载入由接口
paddle.jit.save
存储的模型进行预测推理及fine-tune训练。import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))
# 1. train & save model.
# create network
layer = LinearNet()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# train
train(layer, loader, loss_fn, adam)
# save
path = "example_model/linear"
paddle.jit.save(layer, path)
# 2. load model
# load
loaded_layer = paddle.jit.load(path)
# inference
loaded_layer.eval()
x = paddle.randn([1, IMAGE_SIZE], 'float32')
pred = loaded_layer(x)
# fine-tune
loaded_layer.train()
adam = opt.Adam(learning_rate=0.001, parameters=loaded_layer.parameters())
train(loaded_layer, loader, loss_fn, adam)
兼容载入由接口
paddle.fluid.io.save_inference_model
存储的模型进行预测推理及fine-tune训练。import numpy as np
import paddle
import paddle.static as static
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.nn.functional as F
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
paddle.enable_static()
image = static.data(name='image', shape=[None, 784], dtype='float32')
label = static.data(name='label', shape=[None, 1], dtype='int64')
pred = static.nn.fc(x=image, size=10, activation='softmax')
loss = F.cross_entropy(input=pred, label=label)
avg_loss = paddle.mean(loss)
optimizer = paddle.optimizer.SGD(learning_rate=0.001)
optimizer.minimize(avg_loss)
place = paddle.CPUPlace()
exe = static.Executor(place)
exe.run(static.default_startup_program())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
loader = paddle.io.DataLoader(dataset,
feed_list=[image, label],
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
# 1. train and save inference model
for data in loader():
exe.run(
static.default_main_program(),
feed=data,
fetch_list=[avg_loss])
model_path = "fc.example.model"
paddle.fluid.io.save_inference_model(
model_path, ["image"], [pred], exe)
# 2. load model
# enable dygraph mode
paddle.disable_static(place)
# load
fc = paddle.jit.load(model_path)
# inference
fc.eval()
x = paddle.randn([1, IMAGE_SIZE], 'float32')
pred = fc(x)
# fine-tune
fc.train()
loss_fn = nn.CrossEntropyLoss()
adam = opt.Adam(learning_rate=0.001, parameters=fc.parameters())
loader = paddle.io.DataLoader(dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=2)
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = fc(image)
loss = loss_fn(out, label)
loss.backward()
adam.step()
adam.clear_grad()
print("Epoch {} batch {}: loss = {}".format(
epoch_id, batch_id, np.mean(loss.numpy())))