LambdaDecay
class paddle.optimizer.lr. LambdaDecay ( learning_rate, lr_lambda, last_epoch=- 1, verbose=False ) [源代码]
该接口提供 lambda
函数设置学习率的策略。 lr_lambda
为一个 lambda
函数,其通过 epoch
计算出一个因子,该因子会乘以初始学习率。。
衰减过程可以参考以下代码:
learning_rate = 0.5 # init learning_rate
lr_lambda = lambda epoch: 0.95 ** epoch
learning_rate = 0.5 # epoch 0, 0.5*0.95**0
learning_rate = 0.475 # epoch 1, 0.5*0.95**1
learning_rate = 0.45125 # epoch 2, 0.5*0.95**2
...
参数:
learning_rate (float) - 初始学习率,数据类型为Python float。
lr_lambda (function):lr_lambda 为一个lambda函数,其通过 epoch 计算出一个因子,该因子会乘以初始学习率。
last_epoch (int,可选): 上一轮的轮数,重启训练时设置为上一轮的epoch数。默认值为 -1,则为初始学习率 。
verbose (bool,可选):如果是
True
,则在每一轮更新时在标准输出 stdout 输出一条信息。默认值为False
。
返回:用于调整学习率的 LambdaDecay
实例对象。
代码示例
import paddle
import numpy as np
# train on default dynamic graph mode
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.minimize(loss)
linear.clear_gradients()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 4, 5])
y = paddle.static.data(name='y', shape=[None, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.LambdaDecay(learning_rate=0.5, lr_lambda=lambda x:0.95**x, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(2):
out = exe.run(
main_prog,
feed={
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
step ( epoch=None )
step函数需要在优化器的 optimizer.step() 函数之后调用,调用之后将会根据epoch数来更新学习率,更新之后的学习率将会在优化器下一轮更新参数时使用。
参数:
- epoch (int,可选)- 指定具体的epoch数。默认值None,此时将会从-1自动累加
epoch
数。
返回:
无。
代码示例 :
参照上述示例代码。