unique
paddle. unique ( x, return_index=False, return_inverse=False, return_counts=False, axis=None, dtype=’int64’, name=None ) [源代码]
返回Tensor按升序排序后的独有元素。
参数:
x (Tensor) - 输入的 Tensor ,数据类型为:float32、float64、int32、int64。
return_index (bool, 可选) - 如果为True,则还返回独有元素在输入Tensor中的索引。
return_inverse (bool, 可选) - 如果为True,则还返回输入Tensor的元素对应在独有元素中的索引,该索引可用于重构输入Tensor。
return_counts (bool, 可选) - 如果为True,则还返回每个独有元素在输入Tensor中的个数。
axis (int, 可选) - 指定选取独有元素的轴。默认值为None,将输入平铺为1-D的Tensor后再选取独有元素。
dtype (np.dtype|str, 可选) - 用于设置 index,inverse 或者 counts 的类型,应该为int32或者int64。默认:int64.
name (str,可选)- 具体用法请参见 Name ,一般无需设置,默认值为None。
返回:
out (Tensor) - 独有元素构成的Tensor,数据类型与输入一致。
index (Tensor, 可选) - 独有元素在输入Tensor中的索引,仅在 return_index 为True时返回。
inverse (Tensor, 可选) - 输入Tensor的元素对应在独有元素中的索引,仅在 return_inverse 为True时返回。
counts (Tensor, 可选) - 每个独有元素在输入Tensor中的个数,仅在 return_counts 为True时返回。
代码示例:
import numpy as np
import paddle
x_data = np.array([2, 3, 3, 1, 5, 3])
x = paddle.to_tensor(x_data)
unique = paddle.unique(x)
np_unique = unique.numpy() # [1 2 3 5]
_, indices, inverse, counts = paddle.unique(x, return_index=True, return_inverse=True, return_counts=True)
np_indices = indices.numpy() # [3 0 1 4]
np_inverse = inverse.numpy() # [1 2 2 0 3 2]
np_counts = counts.numpy() # [1 1 3 1]
x_data = np.array([[2, 1, 3], [3, 0, 1], [2, 1, 3]])
x = paddle.to_tensor(x_data)
unique = paddle.unique(x)
np_unique = unique.numpy() # [0 1 2 3]
unique = paddle.unique(x, axis=0)
np_unique = unique.numpy()
# [[2 1 3]
# [3 0 1]]