Auc
class paddle.metric. Auc [源代码]
注意:目前只用Python实现Auc,可能速度略慢
该接口计算Auc,在二分类(binary classification)中广泛使用。相关定义参考 https://en.wikipedia.org/wiki/Receiver_operating_characteristic#Area_under_the_curve 。
该接口创建四个局部变量true_positives, true_negatives, false_positives和false_negatives,用于计算Auc。为了离散化AUC曲线,使用临界值的线性间隔来计算召回率和准确率的值。用false positive的召回值高度计算ROC曲线面积,用recall的准确值高度计算PR曲线面积。
参数:
curve (str) - 将要计算的曲线名的模式,包括’ROC’(默认)或者’PR’(Precision-Recall-curve)。
num_thresholds (int) - 离散化AUC曲线的整数阈值数,默认是4095。
name (str,可选) – metric实例的名字,默认是’auc’。
代码示例
独立使用示例
import numpy as np
import paddle
m = paddle.metric.Auc()
n = 8
class0_preds = np.random.random(size = (n, 1))
class1_preds = 1 - class0_preds
preds = np.concatenate((class0_preds, class1_preds), axis=1)
labels = np.random.randint(2, size = (n, 1))
m.update(preds=preds, labels=labels)
res = m.accumulate()
在Model API中的示例
import numpy as np
import paddle
import paddle.nn as nn
class Data(paddle.io.Dataset):
def __init__(self):
super(Data, self).__init__()
self.n = 1024
self.x = np.random.randn(self.n, 10).astype('float32')
self.y = np.random.randint(2, size=(self.n, 1)).astype('int64')
def __getitem__(self, idx):
return self.x[idx], self.y[idx]
def __len__(self):
return self.n
model = paddle.Model(nn.Sequential(
nn.Linear(10, 2), nn.Softmax())
)
optim = paddle.optimizer.Adam(
learning_rate=0.001, parameters=model.parameters())
def loss(x, y):
return nn.functional.nll_loss(paddle.log(x), y)
model.prepare(
optim,
loss=loss,
metrics=paddle.metric.Auc())
data = Data()
model.fit(data, batch_size=16)
update(pred, label, *args)
更新AUC计算的状态。
参数
preds (numpy.array | Tensor): 一个shape为[batch_size, 2]的Numpy数组或Tensor,preds[i][j]表示第i个样本类别为j的概率。
labels (numpy.array | Tensor): 一个shape为[batch_size, 1]的Numpy数组或Tensor,labels[i]是0或1,表示第i个样本的类别。
返回: 无。
reset()
清空状态和计算结果。
返回:无
accumulate()
累积的统计指标,计算和返回AUC值。
返回:AUC值,一个标量。
name()
返回Metric实例的名字, 参考上述的name,默认是’auc’。
返回: 评估的名字,string类型。