IMDB 数据集使用BOW网络的文本分类
作者: PaddlePaddle
日期: 2021.05
摘要: 本示例教程演示如何在IMDB数据集上用简单的BOW网络完成文本分类的任务。
一、环境配置
本教程基于Paddle 2.1 编写,如果你的环境不是本版本,请先参考官网安装 Paddle 2.1 。
import paddle
import numpy as np
print(paddle.__version__)
2.1.0
二、加载数据
IMDB数据集是一个对电影评论标注为正向评论与负向评论的数据集,共有25000条文本数据作为训练集,25000条文本数据作为测试集。 该数据集的官方地址为: http://ai.stanford.edu/~amaas/data/sentiment/
由于IMDB是NLP领域中常见的数据集,飞桨框架将其内置,路径为 paddle.text.datasets.Imdb
。通过 mode
参数可以控制训练集与测试集。
print('loading dataset...')
train_dataset = paddle.text.datasets.Imdb(mode='train')
test_dataset = paddle.text.datasets.Imdb(mode='test')
print('loading finished')
loading dataset...
loading finished
构建了训练集与测试集后,可以通过 word_idx
获取数据集的词表。在飞桨框架2.1版本中,推荐使用padding的方式来对同一个batch中长度不一的数据进行补齐,所以在字典中,还会添加一个特殊的<pad>词,用来在后续对batch中较短的句子进行填充。
word_dict = train_dataset.word_idx
# add a pad token to the dict for later padding the sequence
word_dict['<pad>'] = len(word_dict)
for k in list(word_dict)[:5]:
print("{}:{}".format(k.decode('ASCII'), word_dict[k]))
print("...")
for k in list(word_dict)[-5:]:
print("{}:{}".format(k if isinstance(k, str) else k.decode('ASCII'), word_dict[k]))
print("totally {} words".format(len(word_dict)))
the:0
and:1
a:2
of:3
to:4
...
virtual:5143
warriors:5144
widely:5145
<unk>:5146
<pad>:5147
totally 5148 words
2.1 参数设置
在这里设置一下词表大小,embedding
的大小,batch_size,等等
vocab_size = len(word_dict) + 1
emb_size = 256
seq_len = 200
batch_size = 32
epochs = 2
pad_id = word_dict['<pad>']
classes = ['negative', 'positive']
def ids_to_str(ids):
#print(ids)
words = []
for k in ids:
w = list(word_dict)[k]
words.append(w if isinstance(w, str) else w.decode('ASCII'))
return " ".join(words)
在这里,取出一条数据打印出来看看,可以用 docs
获取数据的list,用 labels
获取数据的label值,打印出来对数据有一个初步的印象。
# 取出来第一条数据看看样子。
sent = train_dataset.docs[0]
label = train_dataset.labels[1]
print('sentence list id is:', sent)
print('sentence label id is:', label)
print('--------------------------')
print('sentence list is: ', ids_to_str(sent))
print('sentence label is: ', classes[label])
sentence list id is: [5146, 43, 71, 6, 1092, 14, 0, 878, 130, 151, 5146, 18, 281, 747, 0, 5146, 3, 5146, 2165, 37, 5146, 46, 5, 71, 4089, 377, 162, 46, 5, 32, 1287, 300, 35, 203, 2136, 565, 14, 2, 253, 26, 146, 61, 372, 1, 615, 5146, 5, 30, 0, 50, 3290, 6, 2148, 14, 0, 5146, 11, 17, 451, 24, 4, 127, 10, 0, 878, 130, 43, 2, 50, 5146, 751, 5146, 5, 2, 221, 3727, 6, 9, 1167, 373, 9, 5, 5146, 7, 5, 1343, 13, 2, 5146, 1, 250, 7, 98, 4270, 56, 2316, 0, 928, 11, 11, 9, 16, 5, 5146, 5146, 6, 50, 69, 27, 280, 27, 108, 1045, 0, 2633, 4177, 3180, 17, 1675, 1, 2571]
sentence label id is: 0
--------------------------
sentence list is: <unk> has much in common with the third man another <unk> film set among the <unk> of <unk> europe like <unk> there is much inventive camera work there is an innocent american who gets emotionally involved with a woman he doesnt really understand and whose <unk> is all the more striking in contrast with the <unk> br but id have to say that the third man has a more <unk> storyline <unk> is a bit disjointed in this respect perhaps this is <unk> it is presented as a <unk> and making it too coherent would spoil the effect br br this movie is <unk> <unk> in more than one sense one never sees the sun shine grim but intriguing and frightening
sentence label is: negative
2.2 用padding的方式对齐数据
文本数据中,每一句话的长度都是不一样的,为了方便后续的神经网络的计算,常见的处理方式是把数据集中的数据都统一成同样长度的数据。这包括:对于较长的数据进行截断处理,对于较短的数据用特殊的词<pad>
进行填充。接下来的代码会对数据集中的数据进行这样的处理。
def create_padded_dataset(dataset):
padded_sents = []
labels = []
for batch_id, data in enumerate(dataset):
sent, label = data[0], data[1]
padded_sent = np.concatenate([sent[:seq_len], [pad_id] * (seq_len - len(sent))]).astype('int32')
padded_sents.append(padded_sent)
labels.append(label)
return np.array(padded_sents), np.array(labels)
train_sents, train_labels = create_padded_dataset(train_dataset)
test_sents, test_labels = create_padded_dataset(test_dataset)
print(train_sents.shape)
print(train_labels.shape)
print(test_sents.shape)
print(test_labels.shape)
for sent in train_sents[:3]:
print(ids_to_str(sent))
(25000, 200)
(25000, 1)
(25000, 200)
(25000, 1)
<unk> has much in common with the third man another <unk> film set among the <unk> of <unk> europe like <unk> there is much inventive camera work there is an innocent american who gets emotionally involved with a woman he doesnt really understand and whose <unk> is all the more striking in contrast with the <unk> br but id have to say that the third man has a more <unk> storyline <unk> is a bit disjointed in this respect perhaps this is <unk> it is presented as a <unk> and making it too coherent would spoil the effect br br this movie is <unk> <unk> in more than one sense one never sees the sun shine grim but intriguing and frightening <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>
<unk> is the most original movie ive seen in years if you like unique thrillers that are influenced by film noir then this is just the right cure for all of those hollywood summer <unk> <unk> the theaters these days von <unk> <unk> like breaking the waves have gotten more <unk> but this is really his best work it is <unk> without being distracting and offers the perfect combination of suspense and dark humor its too bad he decided <unk> cameras were the wave of the future its hard to say who talked him away from the style he <unk> here but its everyones loss that he went into his heavily <unk> <unk> direction instead <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad> <pad>
<unk> von <unk> is never <unk> in trying out new techniques some of them are very original while others are best <unk> br he depicts <unk> germany as a <unk> train journey with so many cities lying in ruins <unk> <unk> a young american of german descent feels <unk> to help in their <unk> it is not a simple task as he quickly finds outbr br his uncle finds him a job as a night <unk> on the <unk> <unk> line his job is to <unk> to the needs of the passengers when the shoes are <unk> a <unk> mark is made on the <unk> a terrible argument <unk> when a passengers shoes are not <unk> despite the fact they have been <unk> there are many <unk> to the german <unk> of <unk> to such stupid <unk> br the <unk> journey is like an <unk> <unk> mans <unk> through life with all its <unk> and <unk> in one sequence <unk> <unk> through the back <unk> to discover them filled with <unk> bodies appearing to have just escaped from <unk> these images horrible as they are are <unk> as in a dream each with its own terrible impact yet <unk> br
2.3 用Dataset 与 DataLoader 加载
将前面准备好的训练集与测试集用Dataset 与 DataLoader封装后,完成数据的加载。
class IMDBDataset(paddle.io.Dataset):
def __init__(self, sents, labels):
self.sents = sents
self.labels = labels
def __getitem__(self, index):
data = self.sents[index]
label = self.labels[index]
return data, label
def __len__(self):
return len(self.sents)
train_dataset = IMDBDataset(train_sents, train_labels)
test_dataset = IMDBDataset(test_sents, test_labels)
train_loader = paddle.io.DataLoader(train_dataset, return_list=True, shuffle=True,
batch_size=batch_size, drop_last=True)
test_loader = paddle.io.DataLoader(test_dataset, return_list=True, shuffle=True,
batch_size=batch_size, drop_last=True)
三、组建网络
本示例中,将会使用一个不考虑词的顺序的BOW的网络,在查找到每个词对应的embedding后,简单的取平均,作为一个句子的表示。然后用Linear
进行线性变换。为了防止过拟合,还使用了Dropout
。
class MyNet(paddle.nn.Layer):
def __init__(self):
super(MyNet, self).__init__()
self.emb = paddle.nn.Embedding(vocab_size, emb_size)
self.fc = paddle.nn.Linear(in_features=emb_size, out_features=2)
self.dropout = paddle.nn.Dropout(0.5)
def forward(self, x):
x = self.emb(x)
x = paddle.mean(x, axis=1)
x = self.dropout(x)
x = self.fc(x)
return x
四、方式1:用高层API训练与验证
用 Model
封装模型,调用 fit、prepare
完成模型的训练与验证
model = paddle.Model(MyNet()) # 用 Model封装 MyNet
# 模型配置
model.prepare(optimizer=paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
loss=paddle.nn.CrossEntropyLoss())
# 模型训练
model.fit(train_loader,
test_loader,
epochs=epochs,
batch_size=batch_size,
verbose=1)
The loss value printed in the log is the current step, and the metric is the average value of previous steps.
Epoch 1/2
step 781/781 [==============================] - loss: 0.3242 - 5ms/step
Eval begin...
step 781/781 [==============================] - loss: 0.3405 - 3ms/step
Eval samples: 24992
Epoch 2/2
step 781/781 [==============================] - loss: 0.1902 - 5ms/step
Eval begin...
step 781/781 [==============================] - loss: 0.1613 - 3ms/step
Eval samples: 24992
五、方式:2 用底层API训练与验证
def train(model):
model.train()
opt = paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters())
for epoch in range(epochs):
for batch_id, data in enumerate(train_loader):
sent = data[0]
label = data[1]
logits = model(sent)
loss = paddle.nn.functional.cross_entropy(logits, label)
if batch_id % 500 == 0:
print("epoch: {}, batch_id: {}, loss is: {}".format(epoch, batch_id, loss.numpy()))
loss.backward()
opt.step()
opt.clear_grad()
# evaluate model after one epoch
model.eval()
accuracies = []
losses = []
for batch_id, data in enumerate(test_loader):
sent = data[0]
label = data[1]
logits = model(sent)
loss = paddle.nn.functional.cross_entropy(logits, label)
acc = paddle.metric.accuracy(logits, label)
accuracies.append(acc.numpy())
losses.append(loss.numpy())
avg_acc, avg_loss = np.mean(accuracies), np.mean(losses)
print("[validation] accuracy/loss: {}/{}".format(avg_acc, avg_loss))
model.train()
model = MyNet()
train(model)
epoch: 0, batch_id: 0, loss is: [0.69216955]
epoch: 0, batch_id: 500, loss is: [0.3780928]
[validation] accuracy/loss: 0.8504321575164795/0.360515832901001
epoch: 1, batch_id: 0, loss is: [0.35322973]
epoch: 1, batch_id: 500, loss is: [0.28596136]
[validation] accuracy/loss: 0.8634362816810608/0.32615113258361816
The End
可以看到,在这个数据集上,经过两轮的迭代可以得到86%左右的准确率。你也可以通过调整网络结构和超参数,来获得更好的效果。