使用FleetAPI进行分布式训练
FleetAPI 设计说明
Fleet是PaddlePaddle分布式训练的高级API。Fleet的命名出自于PaddlePaddle,象征一个舰队中的多只双桨船协同工作。Fleet的设计在易用性和算法可扩展性方面做出了权衡。用户可以很容易从单机版的训练程序,通过添加几行代码切换到分布式训练程序。此外,分布式训练的算法也可以通过Fleet API接口灵活定义。
Fleet API快速上手示例
下面会针对Fleet API最常见的两种使用场景,用一个模型做示例,目的是让用户有快速上手体验的模板。
假设我们定义MLP网络如下:
import paddle
def mlp(input_x, input_y, hid_dim=128, label_dim=2):
fc_1 = paddle.static.nn.fc(input=input_x, size=hid_dim, act='tanh')
fc_2 = paddle.static.nn.fc(input=fc_1, size=hid_dim, act='tanh')
prediction = paddle.static.nn.fc(input=[fc_2], size=label_dim, act='softmax')
cost = paddle.static.nn.cross_entropy(input=prediction, label=input_y)
avg_cost = paddle.static.nn.mean(x=cost)
return avg_cost
定义一个在内存生成数据的Reader如下:
import numpy as np
def gen_data():
return {"x": np.random.random(size=(128, 32)).astype('float32'),
"y": np.random.randint(2, size=(128, 1)).astype('int64')}
单机Trainer定义
import paddle
from nets import mlp
from utils import gen_data
input_x = paddle.static.data(name="x", shape=[None, 32], dtype='float32')
input_y = paddle.static.data(name="y", shape=[None, 1], dtype='int64')
cost = mlp(input_x, input_y)
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
optimizer.minimize(cost)
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(feed=gen_data(), fetch_list=[cost.name])
print("step%d cost=%f" % (i, cost_val[0]))
Parameter Server训练方法
参数服务器方法对于大规模数据,简单模型的并行训练非常适用,我们基于单机模型的定义给出使用Parameter Server进行训练的示例如下:
import paddle
paddle.enable_static()
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
from nets import mlp
from utils import gen_data
input_x = paddle.static.data(name="x", shape=[None, 32], dtype='float32')
input_y = paddle.static.data(name="y", shape=[None, 1], dtype='int64')
cost = mlp(input_x, input_y)
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
strategy = paddle.distributed.fleet.DistributedStrategy()
strategy.a_sync = True
optimizer = fleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(cost)
if fleet.is_server():
fleet.init_server()
fleet.run_server()
elif fleet.is_worker():
place = paddle.CPUPlace()
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(
program=paddle.static.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
Collective训练方法
Collective Training通常在GPU多机多卡训练中使用,一般在复杂模型的训练中比较常见,我们基于上面的单机模型定义给出使用Collective方法进行分布式训练的示例如下:
import paddle
paddle.enable_static()
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
from nets import mlp
from utils import gen_data
input_x = paddle.static.data(name="x", shape=[None, 32], dtype='float32')
input_y = paddle.static.data(name="y", shape=[None, 1], dtype='int64')
cost = mlp(input_x, input_y)
optimizer = paddle.optimizer.SGD(learning_rate=0.01)
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
optimizer = fleet.distributed_optimizer(optimizer)
optimizer.minimize(cost)
place = paddle.CUDAPlace(0)
exe = paddle.static.Executor(place)
exe.run(paddle.static.default_startup_program())
step = 1001
for i in range(step):
cost_val = exe.run(
program=paddle.static.default_main_program(),
feed=gen_data(),
fetch_list=[cost.name])
print("worker_index: %d, step%d cost = %f" %
(fleet.worker_index(), i, cost_val[0]))
Fleet API相关的接口说明
Fleet API接口
init(role_maker=None)
- fleet初始化,需要在使用fleet其他接口前先调用,用于定义多机的环境配置
is_worker()
- Parameter Server训练中使用,判断当前节点是否是Worker节点,是则返回True,否则返回False
is_server(model_dir=None)
- Parameter Server训练中使用,判断当前节点是否是Server节点,是则返回True,否则返回False
init_server()
- Parameter Server训练中,fleet加载model_dir中保存的模型相关参数进行parameter server的初始化
run_server()
- Parameter Server训练中使用,用来启动server端服务
init_worker()
- Parameter Server训练中使用,用来启动worker端服务
stop_worker()
- 训练结束后,停止worker
distributed_optimizer(optimizer, strategy=None)
- 分布式优化算法装饰器,用户可带入单机optimizer,并配置分布式训练策略,返回一个分布式的optimizer
RoleMaker
PaddleCloudRoleMaker
描述:PaddleCloudRoleMaker是一个高级封装,支持使用paddle.distributed.launch或者paddle.distributed.launch_ps启动脚本
Parameter Server训练示例:
import paddle
paddle.enable_static()
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
role = role_maker.PaddleCloudRoleMaker()
fleet.init(role)
启动方法:
python -m paddle.distributed.launch_ps --worker_num 2 --server_num 2 trainer.py
Collective训练示例:
import paddle
paddle.enable_static()
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
fleet.init(role)
启动方法:
python -m paddle.distributed.launch trainer.py
UserDefinedRoleMaker
描述:用户自定义节点的角色信息,IP和端口信息
示例:
import paddle
paddle.enable_static()
import paddle.distributed.fleet.base.role_maker as role_maker
import paddle.distributed.fleet as fleet
role = role_maker.UserDefinedRoleMaker(
current_id=0,
role=role_maker.Role.SERVER,
worker_num=2,
server_endpoints=["127.0.0.1:36011", "127.0.0.1:36012"])
fleet.init(role)