Cifar10

class paddle.vision.datasets. Cifar10 [源代码]

Cifar-10 数据集的实现,数据集包含10种类别.

参数

  • data_file (str) - 数据集文件路径,如果 download 参数设置为 Truedata_file 参数可以设置为 None 。默认值为 None ,默认存放在: ~/.cache/paddle/dataset/cifar

  • mode (str) - 'train''test' 模式,默认为 'train'

  • transform (callable) - 图片数据的预处理,若为 None 即为不做预处理。默认值为 None

  • download (bool) - 当 data_fileNone 时,该参数决定是否自动下载数据集文件。默认为 True

  • backend (str, optional) - 指定要返回的图像类型:PIL.Image或numpy.ndarray。必须是{‘pil’,’cv2’}中的值。如果未设置此选项,将从paddle.vsion.get_image_backend获得这个值。 默认值: None

返回

Cifar10数据集实例

代码示例

  1. import paddle
  2. import paddle.nn as nn
  3. from paddle.vision.datasets import Cifar10
  4. from paddle.vision.transforms import Normalize
  5. class SimpleNet(paddle.nn.Layer):
  6. def __init__(self):
  7. super(SimpleNet, self).__init__()
  8. self.fc = nn.Sequential(
  9. nn.Linear(3072, 10),
  10. nn.Softmax())
  11. def forward(self, image, label):
  12. image = paddle.reshape(image, (1, -1))
  13. return self.fc(image), label
  14. normalize = Normalize(mean=[0.5, 0.5, 0.5],
  15. std=[0.5, 0.5, 0.5],
  16. data_format='HWC')
  17. cifar10 = Cifar10(mode='train', transform=normalize)
  18. for i in range(10):
  19. image, label = cifar10[i]
  20. image = paddle.to_tensor(image)
  21. label = paddle.to_tensor(label)
  22. model = SimpleNet()
  23. image, label = model(image, label)
  24. print(image.numpy().shape, label.numpy().shape)

使用本API的教程文档