强化学习——Actor Critic Method
作者: EastSmith
日期: 2021.05
摘要: 展示 CartPole-V0
环境中 Actor-Critic
方法的一个实现。
一、介绍
本案例展示了CartPole-V0环境中Actor-Critic方法的一个实现。
Actor Critic Method(演员–评论家算法)
当代理在环境中执行操作和移动时,它将观察到的环境状态映射到两个可能的输出:
推荐动作:动作空间中每个动作的概率值。代理中负责此输出的部分称为actor(演员)。
未来预期回报:它预期在未来获得的所有回报的总和。负责此输出的代理部分是critic(评论家)。
演员和评论家学习执行他们的任务,这样演员推荐的动作就能获得最大的回报。
CartPole-V0
在无摩擦的轨道上,一根杆子系在一辆手推车上。agent(代理)必须施加力才能移动手推车。每走一步,杆子就保持直立,这是奖励。因此,agent(代理)必须学会防止杆子掉下来。
二、环境配置
本教程基于Paddle 2.1 编写,如果你的环境不是本版本,请先参考官网安装 Paddle 2.1 。
import gym, os
from itertools import count
import paddle
import paddle.nn as nn
import paddle.optimizer as optim
import paddle.nn.functional as F
from paddle.distribution import Categorical
print(paddle.__version__)
2.1.0
三、实施演员-评论家网络
这个网络学习两个功能:
演员Actor:它将环境的状态作为输入,并为其动作空间中的每个动作返回一个概率值。
评论家Critic:它将的环境状态作为输入,并返回对未来总回报的估计。
device = paddle.get_device()
env = gym.make("CartPole-v0") ### 或者 env = gym.make("CartPole-v0").unwrapped 开启无锁定环境训练
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
lr = 0.001
class Actor(nn.Layer):
def __init__(self, state_size, action_size):
super(Actor, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear1 = nn.Linear(self.state_size, 128)
self.linear2 = nn.Linear(128, 256)
self.linear3 = nn.Linear(256, self.action_size)
def forward(self, state):
output = F.relu(self.linear1(state))
output = F.relu(self.linear2(output))
output = self.linear3(output)
distribution = Categorical(F.softmax(output, axis=-1))
return distribution
class Critic(nn.Layer):
def __init__(self, state_size, action_size):
super(Critic, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.linear1 = nn.Linear(self.state_size, 128)
self.linear2 = nn.Linear(128, 256)
self.linear3 = nn.Linear(256, 1)
def forward(self, state):
output = F.relu(self.linear1(state))
output = F.relu(self.linear2(output))
value = self.linear3(output)
return value
四、训练模型
def compute_returns(next_value, rewards, masks, gamma=0.99):
R = next_value
returns = []
for step in reversed(range(len(rewards))):
R = rewards[step] + gamma * R * masks[step]
returns.insert(0, R)
return returns
def trainIters(actor, critic, n_iters):
optimizerA = optim.Adam(lr, parameters=actor.parameters())
optimizerC = optim.Adam(lr, parameters=critic.parameters())
for iter in range(n_iters):
state = env.reset()
log_probs = []
values = []
rewards = []
masks = []
entropy = 0
env.reset()
for i in count():
# env.render()
state = paddle.to_tensor(state,dtype="float32",place=device)
dist, value = actor(state), critic(state)
action = dist.sample([1])
next_state, reward, done, _ = env.step(action.cpu().squeeze(0).numpy())
log_prob = dist.log_prob(action);
# entropy += dist.entropy().mean()
log_probs.append(log_prob)
values.append(value)
rewards.append(paddle.to_tensor([reward], dtype="float32", place=device))
masks.append(paddle.to_tensor([1-done], dtype="float32", place=device))
state = next_state
if done:
if iter % 10 == 0:
print('Iteration: {}, Score: {}'.format(iter, i))
break
next_state = paddle.to_tensor(next_state, dtype="float32", place=device)
next_value = critic(next_state)
returns = compute_returns(next_value, rewards, masks)
log_probs = paddle.concat(log_probs)
returns = paddle.concat(returns).detach()
values = paddle.concat(values)
advantage = returns - values
actor_loss = -(log_probs * advantage.detach()).mean()
critic_loss = advantage.pow(2).mean()
optimizerA.clear_grad()
optimizerC.clear_grad()
actor_loss.backward()
critic_loss.backward()
optimizerA.step()
optimizerC.step()
paddle.save(actor.state_dict(), 'model/actor.pdparams')
paddle.save(critic.state_dict(), 'model/critic.pdparams')
env.close()
if __name__ == '__main__':
if os.path.exists('model/actor.pdparams'):
actor = Actor(state_size, action_size)
model_state_dict = paddle.load('model/actor.pdparams')
actor.set_state_dict(model_state_dict )
print('Actor Model loaded')
else:
actor = Actor(state_size, action_size)
if os.path.exists('model/critic.pdparams'):
critic = Critic(state_size, action_size)
model_state_dict = paddle.load('model/critic.pdparams')
critic.set_state_dict(model_state_dict )
print('Critic Model loaded')
else:
critic = Critic(state_size, action_size)
trainIters(actor, critic, n_iters=201)
Iteration: 0, Score: 32
Iteration: 10, Score: 43
Iteration: 20, Score: 11
Iteration: 30, Score: 18
...
五、效果展示
在训练的早期:
在训练的后期
六、总结
Actor-Critic,其实是用了两个网络: 一个输出策略,负责选择动作,这个网络称为Actor;一个负责计算每个动作的分数,这个网络称为Critic。
可以形象地想象为,Actor是舞台上的舞者,Critic是台下的评委,Actor在台上跳舞,一开始舞姿并不好看,Critic根据Actor的舞姿打分。Actor通过Critic给出的分数,去学习:如果Critic给的分数高,那么Actor会调整这个动作的输出概率;相反,如果Critic给的分数低,那么就减少这个动作输出的概率。
Actor-Critic方法结合了值函数逼近(Critic)和策略函数逼近(Actor),它从与环境的交互中学习到越来越精确的Critic(评估),能够实现单步更新,相对单纯的策略梯度,Actor-Critic能够更充分的利用数据。