empty

paddle. empty ( shape, dtype=None, name=None ) [源代码]

该OP创建形状大小为shape并且数据类型为dtype的Tensor,其中元素值是未初始化的。

参数:

  • shape (list|tuple|Tensor) – 指定创建Tensor的形状(shape), 数据类型为int32 或者int64。

  • dtype (np.dtype|str, 可选)- 输出变量的数据类型,可以是bool, float16, float32, float64, int32, int64。若为None,则输出变量的数据类型为系统全局默认类型,默认值为None。

  • name (str,可选)- 具体用法请参见 Name,一般无需设置,默认值为None。

返回:返回一个根据 shapedtype 创建并且尚未初始化的Tensor。

代码示例

  1. import paddle
  2. import numpy as np
  3. paddle.set_device("cpu") # and use cpu device
  4. # example 1: argument ``shape`` is a list which doesn't contain Tensor.
  5. data1 = paddle.empty(shape=[2,3], dtype='float32')
  6. #[[4.3612203e+27 1.8176809e+31 1.3555911e-19] # uninitialized
  7. # [1.1699684e-19 1.3563156e-19 3.6408321e-11]] # uninitialized
  8. # example 2: argument ``shape`` is a Tensor, the data type must be int64 or int32.
  9. shape_data = np.array([2, 3]).astype('int32')
  10. shape = paddle.to_tensor(shape_data)
  11. data2 = paddle.empty(shape=shape, dtype='float32')
  12. #[[1.7192326e-37 4.8125365e-38 1.9866003e-36] # uninitialized
  13. # [1.3284029e-40 7.1117408e-37 2.5353012e+30]] # uninitialized
  14. # example 3: argument ``shape`` is a list which contains Tensor.
  15. dim2_data = np.array([3]).astype('int32')
  16. dim2 = paddle.to_tensor(dim2_data)
  17. data3 = paddle.empty(shape=[2, dim2], dtype='float32')
  18. #[[1.1024214e+24 7.0379409e+22 6.5737699e-34] # uninitialized
  19. # [7.5563101e+31 7.7130405e+31 2.8020654e+20]] # uninitialized