summary
paddle. summary ( net, input_size, dtypes=None ) [源代码]
summary
函数能够打印网络的基础结构和参数信息。
参数:
net (Layer) - 网络实例,必须是
Layer
的子类。input_size (tuple|InputSpec|list[tuple|InputSpec) - 输入张量的大小。如果网络只有一个输入,那么该值需要设定为tuple或InputSpec。如果模型有多个输入。那么该值需要设定为list[tuple|InputSpec],包含每个输入的shape。
dtypes (str,可选) - 输入张量的数据类型,如果没有给定,默认使用
float32
类型。默认值:None。
返回:字典,包含了总的参数量和总的可训练的参数量。
代码示例:
import paddle
import paddle.nn as nn
class LeNet(nn.Layer):
def __init__(self, num_classes=10):
super(LeNet, self).__init__()
self.num_classes = num_classes
self.features = nn.Sequential(
nn.Conv2D(
1, 6, 3, stride=1, padding=1),
nn.ReLU(),
nn.MaxPool2D(2, 2),
nn.Conv2D(
6, 16, 5, stride=1, padding=0),
nn.ReLU(),
nn.MaxPool2D(2, 2))
if num_classes > 0:
self.fc = nn.Sequential(
nn.Linear(400, 120),
nn.Linear(120, 84),
nn.Linear(
84, 10))
def forward(self, inputs):
x = self.features(inputs)
if self.num_classes > 0:
x = paddle.flatten(x, 1)
x = self.fc(x)
return x
lenet = LeNet()
params_info = paddle.summary(lenet, (1, 1, 28, 28))
print(params_info)
# ---------------------------------------------------------------------------
# Layer (type) Input Shape Output Shape Param #
# ===========================================================================
# Conv2D-11 [[1, 1, 28, 28]] [1, 6, 28, 28] 60
# ReLU-11 [[1, 6, 28, 28]] [1, 6, 28, 28] 0
# MaxPool2D-11 [[1, 6, 28, 28]] [1, 6, 14, 14] 0
# Conv2D-12 [[1, 6, 14, 14]] [1, 16, 10, 10] 2,416
# ReLU-12 [[1, 16, 10, 10]] [1, 16, 10, 10] 0
# MaxPool2D-12 [[1, 16, 10, 10]] [1, 16, 5, 5] 0
# Linear-16 [[1, 400]] [1, 120] 48,120
# Linear-17 [[1, 120]] [1, 84] 10,164
# Linear-18 [[1, 84]] [1, 10] 850
# ===========================================================================
# Total params: 61,610
# Trainable params: 61,610
# Non-trainable params: 0
# ---------------------------------------------------------------------------
# Input size (MB): 0.00
# Forward/backward pass size (MB): 0.11
# Params size (MB): 0.24
# Estimated Total Size (MB): 0.35
# ---------------------------------------------------------------------------
# {'total_params': 61610, 'trainable_params': 61610}