AdaptiveMaxPool3D
paddle.nn. AdaptiveMaxPool3D ( output_size, return_mask=False, name=None ) [源代码]
该算子根据输入 x , output_size 等参数对一个输入Tensor计算3D的自适应最大池化。输入和输出都是5-D Tensor, 默认是以 NCDHW 格式表示的,其中 N 是 batch size, C 是通道数, D , H , W 分别是输入特征的深度,高度,宽度.
计算公式如下:
参数
output_size (int|list|tuple): 算子输出特征图的高宽长大小,其数据类型为int,list或tuple。
return_mask (bool,可选): 如果设置为True,则会与输出一起返回最大值的索引,默认为False。
name (str,可选): 操作的名称(可选,默认值为None)。更多信息请参见 Name。
形状
x (Tensor): 默认形状为(批大小,通道数,输出特征深度,高度,宽度),即NCDHW格式的5-D Tensor。 其数据类型为float32或者float64。
output (Tensor): 默认形状为(批大小,通道数,输出特征深度,高度,宽度),即NCDHW格式的5-D Tensor。 其数据类型与输入x相同。
返回
计算AdaptiveMaxPool3D的可调用对象
代码示例
# adaptive max pool3d
# suppose input data in shape of [N, C, D, H, W], `output_size` is [l, m, n],
# output shape is [N, C, l, m, n], adaptive pool divide D, H and W dimensions
# of input data into l * m * n grids averagely and performs poolings in each
# grid to get output.
# adaptive max pool performs calculations as follow:
#
# for i in range(l):
# for j in range(m):
# for k in range(n):
# dstart = floor(i * D / l)
# dend = ceil((i + 1) * D / l)
# hstart = floor(j * H / m)
# hend = ceil((j + 1) * H / m)
# wstart = floor(k * W / n)
# wend = ceil((k + 1) * W / n)
# output[:, :, i, j, k] =
# max(input[:, :, dstart:dend, hstart: hend, wstart: wend])
import paddle
x = paddle.rand((2, 3, 8, 32, 32))
pool = paddle.nn.AdaptiveMaxPool3D(output_size=4)
out = pool(x)
print(out.shape)
# out shape: [2, 3, 4, 4, 4]
pool = paddle.nn.AdaptiveMaxPool3D(output_size=3, return_mask=True)
out, indices = pool(x)
print(out.shape)
print(indices.shape)
# out shape: [2, 3, 3, 3, 3], indices shape: [2, 3, 3, 3, 3]