PolynomialDecay
class paddle.optimizer.lr. PolynomialDecay ( learning_rate, decay_steps, end_lr=0.0001, power=1.0, cycle=False, last_epoch=- 1, verbose=False ) [源代码]
该接口提供学习率按多项式衰减的策略。通过多项式衰减函数,使得学习率值逐步从初始的 learning_rate
,衰减到 end_lr
。
若cycle为True,则计算公式为:
若cycle为False,则计算公式为:
epochnew_learning_rate=min(epoch,decay_steps)=(learning_rate−end_lr)∗(1−epochdecay_steps)power+end_lrepoch=min(epoch,decay_steps)new_learning_rate=(learning_rate−end_lr)∗(1−epochdecay_steps)power+end_lr
参数:
learning_rate (float) - 初始学习率,数据类型为Python float。
decay_steps (int) - 进行衰减的步长,这个决定了衰减周期。
end_lr (float,可选)- 最小的最终学习率。默认值为0.0001。
power (float,可选) - 多项式的幂。默认值为1.0。
cycle (bool,可选) - 学习率下降后是否重新上升。若为True,则学习率衰减到最低学习率值时,会重新上升。若为False,则学习率单调递减。默认值为False。
last_epoch (int,可选) - 上一轮的轮数,重启训练时设置为上一轮的epoch数。默认值为 -1,则为初始学习率。
verbose (bool,可选) - 如果是 True ,则在每一轮更新时在标准输出 stdout 输出一条信息。默认值为
False
。
返回:用于调整学习率的 PolynomialDecay
实例对象。
代码示例
import paddle
import numpy as np
# train on default dynamic graph mode
linear = paddle.nn.Linear(10, 10)
scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler, parameters=linear.parameters())
for epoch in range(20):
for batch_id in range(2):
x = paddle.uniform([10, 10])
out = linear(x)
loss = paddle.mean(out)
loss.backward()
sgd.step()
sgd.clear_gradients()
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
# train on static graph mode
paddle.enable_static()
main_prog = paddle.static.Program()
start_prog = paddle.static.Program()
with paddle.static.program_guard(main_prog, start_prog):
x = paddle.static.data(name='x', shape=[None, 4, 5])
y = paddle.static.data(name='y', shape=[None, 4, 5])
z = paddle.static.nn.fc(x, 100)
loss = paddle.mean(z)
scheduler = paddle.optimizer.lr.PolynomialDecay(learning_rate=0.5, decay_steps=20, verbose=True)
sgd = paddle.optimizer.SGD(learning_rate=scheduler)
sgd.minimize(loss)
exe = paddle.static.Executor()
exe.run(start_prog)
for epoch in range(20):
for batch_id in range(2):
out = exe.run(
main_prog,
feed={
'x': np.random.randn(3, 4, 5).astype('float32'),
'y': np.random.randn(3, 4, 5).astype('float32')
},
fetch_list=loss.name)
scheduler.step() # If you update learning rate each step
# scheduler.step() # If you update learning rate each epoch
step ( epoch=None )
step函数需要在优化器的 optimizer.step() 函数之后调用,调用之后将会根据epoch数来更新学习率,更新之后的学习率将会在优化器下一轮更新参数时使用。
参数:
- epoch (int,可选) - 指定具体的epoch数。默认值None,此时将会从-1自动累加
epoch
数。
返回:
无。
代码示例 :
参照上述示例代码。