conv1d_transpose
paddle.nn.functional.conv1d_transpose
( x, weight, bias\=None, stride\=1, padding\=0, output_padding\=0, groups\=1, dilation\=1, output_size\=None, data_format\=’NCL’, name\=None ) [源代码]
一维转置卷积层(Convlution1D transpose layer)
该层根据输入(input)、卷积核(kernel)和空洞大小(dilations)、步长(stride)、填充(padding)来计算输出特征层大小或者通过output_size指定输出特征层大小。输入(Input)和输出(Output)为NCL或NLC格式,其中N为批尺寸,C为通道数(channel),L为特征层长度。卷积核是MCL格式,M是输出图像通道数,C是输入图像通道数,L是卷积核长度。如果组数大于1,C等于输入图像通道数除以组数的结果。转置卷积的计算过程相当于卷积的反向计算。转置卷积又被称为反卷积(但其实并不是真正的反卷积)。欲了解转置卷积层细节,请参考下面的说明和 参考文献 。如果参数bias_attr不为False, 转置卷积计算会添加偏置项。如果act不为None,则转置卷积计算之后添加相应的激活函数。
输入
和输出
函数关系如下:
其中:
-
: 输入,具有NCL或NLC格式的3-D Tensor
-
: 卷积核,具有NCL格式的3-D Tensor
-
: 卷积计算(注意:转置卷积本质上的计算还是卷积)
-
: 偏置(bias),2-D Tensor,形状为
[M,1]
-
: 激活函数
-
: 输出值,NCL或NLC格式的3-D Tensor, 和
X
的形状可能不同
示例
输入:
输入Tensor的形状:
卷积核的形状 :
输出:
输出Tensor的形状 :
其中
如果 padding
= “SAME”:
L′out\=(Lin+stride−1)strideLout′\=(Lin+stride−1)stride
如果 padding
= “VALID”:
L′out\=(Lin−1)∗stride+dilation∗(Lf−1)+1Lout′\=(Lin−1)∗stride+dilation∗(Lf−1)+1
注意:
如果output_size为None,则 LoutLout = L′outLout′ ;否则,指定的output_size(输出特征层的长度) LoutLout 应当介于 L′outLout′ 和 L′out+strideLout′+stride 之间(不包含 L′out+strideLout′+stride )。
由于转置卷积可以当成是卷积的反向计算,而根据卷积的输入输出计算公式来说,不同大小的输入特征层可能对应着相同大小的输出特征层,所以对应到转置卷积来说,固定大小的输入特征层对应的输出特征层大小并不唯一。
如果指定了output_size, conv1d_transpose
可以自动计算卷积核的大小。
参数:
x (Tensor) - 输入是形状为 [N,C,L][N,C,L] 或 [N,L,C][N,L,C] 的3-D Tensor,N是批尺寸,C是通道数,L是特征长度,数据类型为float16, float32或float64。
weight (Tensor) - 形状为 [C,M/g,kL][C,M/g,kL] 的卷积核(卷积核)。 M是输出通道数, g是分组的个数,kL是卷积核的长度。
bias (int|list|tuple,可选) - 偏置项,形状为: [M,][M,] 。
stride (int|list|tuple,可选) - 步长大小。整数或包含一个整数的列表或元组。默认值:1。 - padding (int|list|tuple|str,可选) - 填充大小。可以是以下三种格式:(1)字符串,可以是”VALID”或者”SAME”,表示填充算法,计算细节可参考下述
padding
= “SAME”或padding
= “VALID” 时的计算公式。(2)整数,表示在输入特征两侧各填充padding
大小的0。(3)包含一个整数的列表或元组,表示在输入特征两侧各填充padding[0]
大小的0. 默认值:0。output_padding (int|list|tuple, optional): 输出形状上尾部一侧额外添加的大小. 默认值: 0.
groups (int,可选) - 一维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
dilation (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。整数或包含一个整数的列表或元组。默认值:1。
output_size (int|list|tuple,可选) - 输出特征的长度,整数或包含一个整数的列表或元组。如果为
None
, 则会用filter_size
,padding
和stride
计算出输出特征的长度。如果output_size
和filter_size
同时被指定,则会遵循上述公式进行计算。output_size
和filter_size
不能同时被设置为None
。默认值:None。data_format (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是”NCL”和”NLC”。N是批尺寸,C是通道数,L是特征长度。默认值:”NCL”。
name (str,可选) – 具体用法请参见 cn_api_guide_Name ,一般无需设置,默认值:None。
返回:3-D Tensor,数据类型与 input
一致。如果未指定激活层,则返回转置卷积计算的结果,如果指定激活层,则返回转置卷积和激活计算之后的最终结果。
代码示例
import paddle
import paddle.nn.functional as F
import numpy as np
# shape: (1, 2, 4)
x=np.array([[[4, 0, 9, 7],
[8, 0, 9, 2,]]]).astype(np.float32)
# shape: (2, 1, 2)
w=np.array([[[7, 0]],
[[4, 2]]]).astype(np.float32)
x_var = paddle.to_tensor(x)
w_var = paddle.to_tensor(w)
y_var = F.conv1d_transpose(x_var, w_var)
print(y_var)
# [[[60. 16. 99. 75. 4.]]]