升级指南
升级概要
飞桨2.0版本,相对1.8版本有重大升级,涉及开发方面的重要变化如下:
动态图功能完善,动态图模下数据表示概念为Tensor,推荐使用动态图模式;
API目录体系调整,API的命名和别名进行了统一规范化,虽然兼容老版API,但请使用新API体系开发;
数据处理、组网方式、模型训练、多卡启动、模型保存和推理等开发流程都有了对应优化,请对应查看说明;
以上变化请仔细阅读本指南。对于已有模型的升级,我们还提供了2.0转换工具(见附录)提供更自动化的辅助。 其他一些功能增加方面诸如动态图对量化训练、混合精度的支持、动静转换等方面不在本指南列出,具体可查看Release Note或对应文档。
一、动态图
推荐优先使用动态图模式
飞桨2.0版本将会把动态图作为默认模式(如果还想使用静态图,可通过调用paddle.enable_static
切换)。
import paddle
使用Tensor概念表示数据
静态图模式下,由于组网时使用的数据不能实时访问,Paddle用Variable来表示数据。 动态图下,从直观性等角度考虑,将数据表示概念统一为Tensor。动态图下Tensor的创建主要有两种方法:
- 通过调用paddle.to_tensor函数,将python scalar/list,或者numpy.ndarray数据转换为Paddle的Tensor。具体使用方法,请查看官网的API文档。
import paddle
import numpy as np
paddle.to_tensor(1)
paddle.to_tensor((1.1, 2.2))
paddle.to_tensor(np.random.randn(3, 4))
- 通过调用
paddle.zeros, paddle.ones, paddle.full, paddle.arange, paddle.rand, paddle.randn, paddle.randint, paddle.normal, paddle.uniform
等函数,创建并返回Tensor。
二、API
API目录结构
为了API组织更加简洁和清晰,将原来padddle.fluid.xxx的目录体系全新升级为paddle.xxx,并对子目录的组织进行了系统的条理化优化。同时还增加了高层API,可以高低搭配使用。paddle.fluid目录下暂时保留了1.8版本API,主要是兼容性考虑,未来会被删除。 基于2.0的开发任务,请使用paddle目录下的API,不要再使用paddle.fluid目录下的API。 如果发现Paddle目录下有API缺失的情况,推荐使用基础API进行组合实现;您也可以通过在 github 上提issue的方式向我们反馈。
2.0版本的API 整体目录结构如下:
目录 | 功能和包含的API |
---|---|
paddle.* | paddle根目录下保留了常用API的别名,当前包括:paddle.tensor、paddle.framework和paddle.device目录下的所有API |
paddle.tensor | tensor操作相关的API,例如创建 zeros 、矩阵运算 matmul 、变换 concat 、计算 add 、查找 argmax 等。 |
paddle.framework | 框架通用API和动态图模式的API,例如 no_grad 、 save 、 load 等。 |
paddle.device | 设备管理相关API,比如:set_device, get_device等 |
paddle.amp | paddle自动混合精度策略,包括 auto_cast 、 GradScaler 等。 |
paddle.callbacks | paddle日志回调类,包括 ModelCheckpoint 、 ProgBarLogger 等。 |
paddle.nn | 组网相关的API,例如 Linear 、卷积 Conv2D 、循环神经网络 LSTM 、损失函数 CrossEntropyLoss 、激活函数 ReLU 等。 |
paddle.static | 静态图下基础框架相关API,比如:Variable, Program, Executor等 |
paddle.static.nn | 静态图下组网专用API,例如全连接层 fc 、控制流 while_loop/cond 。 |
paddle.optimizer | 优化算法相关API,比如:SGD、Adagrad、Adam等。 |
paddle.optimizer.lr | 学习率衰减相关API,例如 NoamDecay 、 StepDecay 、 PiecewiseDecay 等。 |
paddle.metric | 评估指标计算相关的API,比如:Accuracy, Auc等。 |
paddle.io | 数据输入输出相关API,比如:Dataset, DataLoader等 |
paddle.distributed | 分布式相关基础API |
paddle.distributed.fleet | 分布式相关高层API |
paddle.vision | 视觉领域API,例如数据集 Cifar10 、数据处理 ColorJitter 、常用基础网络结构 ResNet 等。 |
paddle.text | 目前包括NLP领域相关的数据集,如 Imdb 、 Movielens 。 |
API别名规则
为了方便用户使用,API会在不同的路径下建立别名:
所有device, framework, tensor目录下的API,均在paddle根目录建立别名;除少数特殊API外,其他API在paddle根目录下均没有别名。
paddle.nn目录下除functional目录以外的所有API,在paddle.nn目录下均有别名;functional目录中的API,在paddle.nn目录下均没有别名。
推荐用户优先使用较短的路径的别名,比如
paddle.add -> paddle.tensor.add
,推荐优先使用paddle.add
以下为一些特殊的别名关系,推荐使用左边的API名称:
paddle.tanh -> paddle.tensor.tanh -> paddle.nn.functional.tanh
paddle.remainder -> paddle.mod -> paddle.floor_mod
paddle.rand -> paddle.uniform
paddle.randn -> paddle.standard_normal
Layer.set_state_dict -> Layer.set_dict
常用API名称变化
加、减、乘、除使用全称,不使用简称
对于当前逐元素操作,不加elementwise前缀
对于按照某一轴操作,不加reduce前缀
Conv, Pool, Dropout, BatchNorm, Pad组网类API根据输入数据类型增加1D, 2D, 3D后缀
Paddle 1.8 API名称 | Paddle 2.0对应的名称 |
---|---|
paddle.fluid.layers.elementwise_add | paddle.add |
paddle.fluid.layers.elementwise_sub | paddle.subtract |
paddle.fluid.layers.elementwise_mul | paddle.multiply |
paddle.fluid.layers.elementwise_div | paddle.divide |
paddle.fluid.layers.elementwise_max | paddle.maximum |
paddle.fluid.layers.elementwise_min | paddle.minimum |
paddle.fluid.layers.reduce_sum | paddle.sum |
paddle.fluid.layers.reduce_prod | paddle.prod |
paddle.fluid.layers.reduce_max | paddle.max |
paddle.fluid.layers.reduce_min | paddle.min |
paddle.fluid.layers.reduce_all | paddle.all |
paddle.fluid.layers.reduce_any | paddle.any |
paddle.fluid.dygraph.Conv2D | paddle.nn.Conv2D |
paddle.fluid.dygraph.Conv2DTranspose | paddle.nn.Conv2DTranspose |
paddle.fluid.dygraph.Pool2D | paddle.nn.MaxPool2D, paddle.nn.AvgPool2D |
三、开发流程
数据处理
数据处理推荐使用paddle.io目录下的Dataset,Sampler, BatchSampler, DataLoader接口,不推荐reader类接口。一些常用的数据集已经在paddle.vision.datasets和paddle.text.datasets目录实现,具体参考API文档。
from paddle.io import Dataset
class MyDataset(Dataset):
"""
步骤一:继承paddle.io.Dataset类
"""
def __init__(self, mode='train'):
"""
步骤二:实现构造函数,定义数据读取方式,划分训练和测试数据集
"""
super(MyDataset, self).__init__()
if mode == 'train':
self.data = [
['traindata1', 'label1'],
['traindata2', 'label2'],
['traindata3', 'label3'],
['traindata4', 'label4'],
]
else:
self.data = [
['testdata1', 'label1'],
['testdata2', 'label2'],
['testdata3', 'label3'],
['testdata4', 'label4'],
]
def __getitem__(self, index):
"""
步骤三:实现__getitem__方法,定义指定index时如何获取数据,并返回单条数据(训练数据,对应的标签)
"""
data = self.data[index][0]
label = self.data[index][1]
return data, label
def __len__(self):
"""
步骤四:实现__len__方法,返回数据集总数目
"""
return len(self.data)
# 测试定义的数据集
train_dataset = MyDataset(mode='train')
val_dataset = MyDataset(mode='test')
print('=============train dataset=============')
for data, label in train_dataset:
print(data, label)
print('=============evaluation dataset=============')
for data, label in val_dataset:
print(data, label)
组网方式
Sequential 组网
针对顺序的线性网络结构我们可以直接使用Sequential来快速完成组网,可以减少类的定义等代码编写。
import paddle
# Sequential形式组网
mnist = paddle.nn.Sequential(
paddle.nn.Flatten(),
paddle.nn.Linear(784, 512),
paddle.nn.ReLU(),
paddle.nn.Dropout(0.2),
paddle.nn.Linear(512, 10)
)
SubClass组网
针对一些比较复杂的网络结构,就可以使用Layer子类定义的方式来进行模型代码编写,在__init__
构造函数中进行组网Layer的声明,在forward
中使用声明的Layer变量进行前向计算。子类组网方式也可以实现sublayer的复用,针对相同的layer可以在构造函数中一次性定义,在forward中多次调用。
import paddle
# Layer类继承方式组网
class Mnist(paddle.nn.Layer):
def __init__(self):
super(Mnist, self).__init__()
self.flatten = paddle.nn.Flatten()
self.linear_1 = paddle.nn.Linear(784, 512)
self.linear_2 = paddle.nn.Linear(512, 10)
self.relu = paddle.nn.ReLU()
self.dropout = paddle.nn.Dropout(0.2)
def forward(self, inputs):
y = self.flatten(inputs)
y = self.linear_1(y)
y = self.relu(y)
y = self.dropout(y)
y = self.linear_2(y)
return y
mnist = Mnist()
模型训练
使用高层API
增加了paddle.Model高层API,大部分任务可以使用此API用于简化训练、评估、预测类代码开发。注意区别Model和Net概念,Net是指继承paddle.nn.Layer的网络结构;而Model是指持有一个Net对象,同时指定损失函数、优化算法、评估指标的可训练、评估、预测的实例。具体参考高层API的代码示例。
import paddle
from paddle.vision.transforms import ToTensor
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=ToTensor())
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=ToTensor())
lenet = paddle.vision.models.LeNet()
# Mnist继承paddle.nn.Layer属于Net,model包含了训练功能
model = paddle.Model(lenet)
# 设置训练模型所需的optimizer, loss, metric
model.prepare(
paddle.optimizer.Adam(learning_rate=0.001, parameters=model.parameters()),
paddle.nn.CrossEntropyLoss(),
paddle.metric.Accuracy(topk=(1, 2))
)
# 启动训练
model.fit(train_dataset, epochs=2, batch_size=64, log_freq=200)
# 启动评估
model.evaluate(test_dataset, log_freq=20, batch_size=64)
使用基础API
import paddle
from paddle.vision.transforms import ToTensor
train_dataset = paddle.vision.datasets.MNIST(mode='train', transform=ToTensor())
test_dataset = paddle.vision.datasets.MNIST(mode='test', transform=ToTensor())
lenet = paddle.vision.models.LeNet()
loss_fn = paddle.nn.CrossEntropyLoss()
# 加载训练集 batch_size 设为 64
train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
def train():
epochs = 2
adam = paddle.optimizer.Adam(learning_rate=0.001, parameters=lenet.parameters())
# 用Adam作为优化函数
for epoch in range(epochs):
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = data[1]
predicts = lenet(x_data)
acc = paddle.metric.accuracy(predicts, y_data)
loss = loss_fn(predicts, y_data)
loss.backward()
if batch_id % 100 == 0:
print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, loss.numpy(), acc.numpy()))
adam.step()
adam.clear_grad()
# 启动训练
train()
单机多卡启动
2.0增加paddle.distributed.spawn函数来启动单机多卡训练,同时原有的paddle.distributed.launch的方式依然保留。
方式1、launch启动
高层API场景
当调用paddle.Model高层来实现训练时,想要启动单机多卡训练非常简单,代码不需要做任何修改,只需要在启动时增加一下参数-m paddle.distributed.launch
。
# 单机单卡启动,默认使用第0号卡
$ python train.py
# 单机多卡启动,默认使用当前可见的所有卡
$ python -m paddle.distributed.launch train.py
# 单机多卡启动,设置当前使用的第0号和第1号卡
$ python -m paddle.distributed.launch --selected_gpus='0,1' train.py
# 单机多卡启动,设置当前使用第0号和第1号卡
$ export CUDA_VISIBLE_DEVICES=0,1
$ python -m paddle.distributed.launch train.py
基础API场景
如果使用基础API实现训练,想要启动单机多卡训练,需要对单机单卡的代码进行3处修改,具体如下:
import paddle
# 第1处改动,导入分布式训练所需要的包
import paddle.distributed as dist
train_dataset = paddle.vision.datasets.MNIST(mode='train')
test_dataset = paddle.vision.datasets.MNIST(mode='test')
lenet = paddle.vision.models.LeNet()
loss_fn = paddle.nn.CrossEntropyLoss()
# 加载训练集 batch_size 设为 64
train_loader = paddle.io.DataLoader(train_dataset, batch_size=64, shuffle=True)
def train():
# 第2处改动,初始化并行环境
dist.init_parallel_env()
# 第3处改动,增加paddle.DataParallel封装
lenet = paddle.DataParallel(lenet)
epochs = 2
adam = paddle.optimizer.Adam(learning_rate=0.001, parameters=lenet.parameters())
# 用Adam作为优化函数
for epoch in range(epochs):
for batch_id, data in enumerate(train_loader()):
x_data = data[0]
y_data = data[1]
predicts = lenet(x_data)
acc = paddle.metric.accuracy(predicts, y_data)
loss = loss_fn(predicts, y_data)
loss.backward()
if batch_id % 100 == 0:
print("epoch: {}, batch_id: {}, loss is: {}, acc is: {}".format(epoch, batch_id, loss.numpy(), acc.numpy()))
adam.step()
adam.clear_grad()
# 启动训练
train()
修改完后保存文件,然后使用跟高层API相同的启动方式即可
注意: 单卡训练不支持调用 init_parallel_env
,请使用以下几种方式进行分布式训练。
# 单机多卡启动,默认使用当前可见的所有卡
$ python -m paddle.distributed.launch train.py
# 单机多卡启动,设置当前使用的第0号和第1号卡
$ python -m paddle.distributed.launch --selected_gpus '0,1' train.py
# 单机多卡启动,设置当前使用第0号和第1号卡
$ export CUDA_VISIBLE_DEVICES=0,1
$ python -m paddle.distributed.launch train.py
方式2、spawn启动
launch方式启动训练,以文件为单位启动多进程,需要用户在启动时调用 paddle.distributed.launch
,对于进程的管理要求较高。飞桨框架2.0版本增加了 spawn
启动方式,可以更好地控制进程,在日志打印、训练退出时更友好。使用示例如下:
from __future__ import print_function
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
import paddle.distributed as dist
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear1 = nn.Linear(10, 10)
self._linear2 = nn.Linear(10, 1)
def forward(self, x):
return self._linear2(self._linear1(x))
def train(print_result=False):
# 1. 初始化并行训练环境
dist.init_parallel_env()
# 2. 创建并行训练 Layer 和 Optimizer
layer = LinearNet()
dp_layer = paddle.DataParallel(layer)
loss_fn = nn.MSELoss()
adam = opt.Adam(
learning_rate=0.001, parameters=dp_layer.parameters())
# 3. 运行网络
inputs = paddle.randn([10, 10], 'float32')
outputs = dp_layer(inputs)
labels = paddle.randn([10, 1], 'float32')
loss = loss_fn(outputs, labels)
if print_result is True:
print("loss:", loss.numpy())
loss.backward()
adam.step()
adam.clear_grad()
# 使用方式1:仅传入训练函数
# 适用场景:训练函数不需要任何参数,并且需要使用所有当前可见的GPU设备并行训练
if __name__ == '__main__':
dist.spawn(train)
# 使用方式2:传入训练函数和参数
# 适用场景:训练函数需要一些参数,并且需要使用所有当前可见的GPU设备并行训练
if __name__ == '__main__':
dist.spawn(train, args=(True,))
# 使用方式3:传入训练函数、参数并指定并行进程数
# 适用场景:训练函数需要一些参数,并且仅需要使用部分可见的GPU设备并行训练,例如:
# 当前机器有8张GPU卡 {0,1,2,3,4,5,6,7},此时会使用前两张卡 {0,1};
# 或者当前机器通过配置环境变量 CUDA_VISIBLE_DEVICES=4,5,6,7,仅使4张
# GPU卡可见,此时会使用可见的前两张卡 {4,5}
if __name__ == '__main__':
dist.spawn(train, args=(True,), nprocs=2)
# 使用方式4:传入训练函数、参数、指定进程数并指定当前使用的卡号
# 使用场景:训练函数需要一些参数,并且仅需要使用部分可见的GPU设备并行训练,但是
# 可能由于权限问题,无权配置当前机器的环境变量,例如:当前机器有8张GPU卡
# {0,1,2,3,4,5,6,7},但你无权配置CUDA_VISIBLE_DEVICES,此时可以通过
# 指定参数 selected_gpus 选择希望使用的卡,例如 selected_gpus='4,5',
# 可以指定使用第4号卡和第5号卡
if __name__ == '__main__':
dist.spawn(train, nprocs=2, selected_gpus='4,5')
# 使用方式5:指定多卡通信的起始端口
# 使用场景:端口建立通信时提示需要重试或者通信建立失败
# Paddle默认会通过在当前机器上寻找空闲的端口用于多卡通信,但当机器使用环境
# 较为复杂时,程序找到的端口可能不够稳定,此时可以自行指定稳定的空闲起始
# 端口以获得更稳定的训练体验
if __name__ == '__main__':
dist.spawn(train, nprocs=2, started_port=12345)
模型保存
Paddle保存的模型有两种格式,一种是训练格式,保存模型参数和优化器相关的状态,可用于恢复训练;一种是预测格式,保存预测的静态图网络结构以及参数,用于预测部署。
高层API场景
高层API下用于预测部署的模型保存方法为:
model = paddle.Model(Mnist())
# 预测格式,保存的模型可用于预测部署
model.save('mnist', training=False)
# 保存后可以得到预测部署所需要的模型
基础API场景
动态图训练的模型,可以通过动静转换功能,转换为可部署的静态图模型,具体做法如下:
import paddle
from paddle.jit import to_static
from paddle.static import InputSpec
class SimpleNet(paddle.nn.Layer):
def __init__(self):
super(SimpleNet, self).__init__()
self.linear = paddle.nn.Linear(10, 3)
# 第1处改动
# 通过InputSpec指定输入数据的形状,None表示可变长
# 通过to_static装饰器将动态图转换为静态图Program
@to_static(input_spec=[InputSpec(shape=[None, 10], name='x'), InputSpec(shape=[3], name='y')])
def forward(self, x, y):
out = self.linear(x)
out = out + y
return out
net = SimpleNet()
# 第2处改动
# 保存静态图模型,可用于预测部署
paddle.jit.save(net, './simple_net')
推理
推理库Paddle Inference的API做了升级,简化了写法,以及去掉了历史上冗余的概念。API的变化为纯增,原有API保持不变,但推荐新的API体系,旧API在后续版本会逐步删除。
C++ API
重要变化:
命名空间从
paddle
变更为paddle_infer
PaddleTensor
,PaddleBuf
等被废弃,ZeroCopyTensor
变为默认 Tensor 类型,并更名为Tensor
新增
PredictorPool
工具类简化多线程 predictor 的创建,后续也会增加更多周边工具CreatePredictor
(原CreatePaddlePredictor
) 的返回值由unique_ptr
变为shared_ptr
以避免 Clone 后析构顺序出错的问题
API 变更
原有命名 | 现有命名 | 行为变化 |
---|---|---|
头文件 paddle_infer.h | 无变化 | 包含旧接口,保持向后兼容 |
无 | paddle_inference_api.h | 新API,可以与旧接口并存 |
CreatePaddlePredictor | CreatePredictor | 返回值变为 shared_ptr |
ZeroCopyTensor | Tensor | 无 |
AnalysisConfig | Config | 无 |
TensorRTConfig | 废弃 | |
PaddleTensor + PaddleBuf | 废弃 | |
Predictor::GetInputTensor | Predictor::GetInputHandle | 无 |
Predictor::GetOutputTensor | Predictor::GetOutputHandle | 无 |
PredictorPool | 简化创建多个 predictor 的支持 |
使用新 C++ API 的流程与之前完全一致,只有命名变化
#include "paddle_infernce_api.h"
using namespace paddle_infer;
Config config;
config.SetModel("xxx_model_dir");
auto predictor = CreatePredictor(config);
// Get the handles for the inputs and outputs of the model
auto input0 = predictor->GetInputHandle("X");
auto output0 = predictor->GetOutputHandle("Out");
for (...) {
// Assign data to input0
MyServiceSetData(input0);
predictor->Run();
// get data from the output0 handle
MyServiceGetData(output0);
}
Python API
Python API 的变更与 C++ 基本对应,会在2.0版发布。
附录
2.0转换工具
为了降级代码升级的成本,我们提供了转换工具,可以帮助将Paddle 1.8版本开发的代码,升级为2.0的API。由于相比于Paddle 1.8版本,2.0版本的API进行了大量的升级,包括API名称,参数名称,行为等。转换工具当前还不能覆盖所有的API升级;对于无法转换的API,转换工具会报错,提示用户手动升级。
https://github.com/PaddlePaddle/paddle\_upgrade\_tool
对于转换工具没有覆盖的API,请查看官网的API文档,手动升级代码的API。
2.0文档教程
以下提供了2.0版本的一些示例教程:
您可以在官网应用实践栏目内进行在线浏览,也可以下载在这里提供的源代码: https://github.com/PaddlePaddle/book/tree/develop/paddle2.0\_docs