StepDecay
class paddle.fluid.dygraph.StepDecay
( learning_rate, step_size, decay_rate=0.1 ) [源代码]
该接口提供 step_size
衰减学习率的功能,每经过 step_size
个 epoch
时会通过 decay_rate
衰减一次学习率。
算法可以描述为:
learning_rate = 0.5
step_size = 30
decay_rate = 0.1
learning_rate = 0.5 if epoch < 30
learning_rate = 0.05 if 30 <= epoch < 60
learning_rate = 0.005 if 60 <= epoch < 90
...
参数:
learning_rate (float|int) - 初始化的学习率。可以是Python的float或int。
step_size (int) - 学习率每衰减一次的间隔。
decay_rate (float, optional) - 学习率的衰减率。
new_lr = origin_lr * decay_rate
。其值应该小于1.0。默认:0.1。
返回: 无
代码示例:
import paddle.fluid as fluid
import numpy as np
with fluid.dygraph.guard():
x = np.random.uniform(-1, 1, [10, 10]).astype("float32")
linear = fluid.dygraph.Linear(10, 10)
input = fluid.dygraph.to_variable(x)
scheduler = fluid.dygraph.StepDecay(0.5, step_size=3)
adam = fluid.optimizer.Adam(learning_rate = scheduler, parameter_list = linear.parameters())
for epoch in range(9):
for batch_id in range(5):
out = linear(input)
loss = fluid.layers.reduce_mean(out)
adam.minimize(loss)
scheduler.epoch()
print("epoch:{}, current lr is {}" .format(epoch, adam.current_step_lr()))
# epoch:0, current lr is 0.5
# epoch:1, current lr is 0.5
# epoch:2, current lr is 0.5
# epoch:3, current lr is 0.05
# epoch:4, current lr is 0.05
# epoch:5, current lr is 0.05
# epoch:6, current lr is 0.005
# epoch:7, current lr is 0.005
# epoch:8, current lr is 0.005
epoch
( epoch=None )
通过当前的 epoch 调整学习率,调整后的学习率将会在下一次调用 optimizer.minimize
时生效。
参数:
- epoch (int|float,可选) - 类型:int或float。指定当前的epoch数。默认:无,此时将会自动累计epoch数。
返回:
无
代码示例:
参照上述示例代码。