max_pool2d
paddle.nn.functional.max_pool2d
( x, kernel_size, stride\=None, padding\=0, ceil_mode\=False, return_mask\=False, data_format\=’NCHW’, name\=None ) [源代码]
该接口用于构建 max_pool2d 类的一个可调用对象,其将构建一个二维平均池化层,根据输入参数 kernel_size, stride, padding 等参数对输入做最大池化操作。
例如:
输入:
X 形状:
属性:
kernel_size:
stride:
输出:
Out 形状:(N,C,Hout,Wout)(N,C,Hout,Wout)
out(Ni,Cj,h,w)\=maxm\=0,…,ksize[0]−1maxn\=0,…,ksize[1]−1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)out(Ni,Cj,h,w)\=maxm\=0,…,ksize[0]−1maxn\=0,…,ksize[1]−1input(Ni,Cj,stride[0]×h+m,stride[1]×w+n)
参数
x (Tensor):形状为 [N,C,H,W] 或 [N,H,W,C] 的4-D Tensor,N是批尺寸,C是通道数,H是特征高度,W是特征宽度,数据类型为float32或float64。
kernel_size (int|list|tuple): 池化核大小。如果它是一个元组或列表,它必须包含两个整数值, (pool_size_Height, pool_size_Width)。若为一个整数,则它的平方值将作为池化核大小,比如若pool_size=2, 则池化核大小为2x2。
stride (int|list|tuple):池化层的步长。如果它是一个元组或列表,它将包含两个整数,(pool_stride_Height, pool_stride_Width)。若为一个整数,则表示H和W维度上stride均为该值。默认值为kernel_size.
padding (string|int|list|tuple) 池化填充。如果它是一个字符串,可以是”VALID”或者”SAME”,表示填充算法。如果它是一个元组或列表,它可以有3种格式:(1)包含2个整数值:[pad_height, pad_width];(2)包含4个整数值:[pad_height_top, pad_height_bottom, pad_width_left, pad_width_right];(3)包含4个二元组:当 data_format 为”NCHW”时为 [[0,0], [0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right]],当 data_format 为”NHWC”时为[[0,0], [pad_height_top, pad_height_bottom], [pad_width_left, pad_width_right], [0,0]]。若为一个整数,则表示H和W维度上均为该值。默认值:0。
ceil_mode (bool):是否用ceil函数计算输出高度和宽度。如果是True,则使用 ceil 计算输出形状的大小。默认为None
return_mask (bool):是否返回最大索引和输出。默认为False.
data_format (str): 输入和输出的数据格式,可以是”NCHW”和”NHWC”。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:”NCHW”
name (str):函数的名字,默认为None.
返回
4-D Tensor,数据类型与输入 x 一致。
代码示例
import paddle
import paddle.nn.functional as F
# max pool2d
input = paddle.uniform(shape=[1, 2, 32, 32], dtype='float32', min=-1, max=1)
output = F.max_pool2d(input,
kernel_size=2,
stride=2, padding=0)
# output.shape [1, 3, 16, 16]
# for return_mask=True
output, max_indices = F.max_pool2d(input,
kernel_size=2,
stride=2,
padding=0,
return_mask=True)
# output.shape [1, 3, 16, 16], max_indices.shape [1, 3, 16, 16],