conv2d
paddle.nn.functional.conv2d
( x, weight, bias\=None, stride\=1, padding\=0, dilation\=1, groups\=1, data_format\=’NCHW’, name\=None ) [源代码]
该OP是二维卷积层(convolution2d layer),根据输入、卷积核、步长(stride)、填充(padding)、空洞大小(dilations)一组参数计算输出特征层大小。输入和输出是NCHW或NHWC格式,其中N是批尺寸,C是通道数,H是特征高度,W是特征宽度。卷积核是MCHW格式,M是输出图像通道数,C是输入图像通道数,H是卷积核高度,W是卷积核宽度。如果组数(groups)大于1,C等于输入图像通道数除以组数的结果。详情请参考UFLDL’s : 卷积 。如果bias_attr不为False,卷积计算会添加偏置项。如果指定了激活函数类型,相应的激活函数会作用在最终结果上。
对每个输入X,有等式:
其中:
-
:输入值,NCHW或NHWC格式的4-D Tensor
-
:卷积核值,MCHW格式的4-D Tensor
-
:卷积操作
-
:偏置值,2-D Tensor,形状为
[M,1]
-
:激活函数
-
:输出值,NCHW或NHWC格式的4-D Tensor, 和
X
的形状可能不同
示例
输入:
输入形状:
卷积核形状:
输出:
输出形状: (N,Cout,Hout,Wout)(N,Cout,Hout,Wout)
其中
HoutWout\=(Hin+padding_height_top+padding_height_bottom−(dilation[0]∗(Hf−1)+1))stride[0]+1\=(Win+padding_width_left+padding_width_right−(dilation[1]∗(Wf−1)+1))stride[1]+1Hout\=(Hin+padding_height_top+padding_height_bottom−(dilation[0]∗(Hf−1)+1))stride[0]+1Wout\=(Win+padding_width_left+padding_width_right−(dilation[1]∗(Wf−1)+1))stride[1]+1
如果 padding
= “SAME”:
Hout\=(Hin+stride[0]−1)stride[0]Hout\=(Hin+stride[0]−1)stride[0]
Wout\=(Win+stride[1]−1)stride[1]Wout\=(Win+stride[1]−1)stride[1]
如果 padding
= “VALID”:
Hout\=(Hin−(dilation[0]∗(Hf−1)+1))stride[0]+1Wout\=(Win−(dilation[1]∗(Wf−1)+1))stride[1]+1Hout\=(Hin−(dilation[0]∗(Hf−1)+1))stride[0]+1Wout\=(Win−(dilation[1]∗(Wf−1)+1))stride[1]+1
参数:
x (Tensor) - 输入是形状为 [N,C,H,W][N,C,H,W] 或 [N,H,W,C][N,H,W,C] 的4-D Tensor,N是批尺寸,C是通道数,H是特征高度,W是特征宽度,数据类型为float16, float32或float64。
weight (Tensor)) - 形状为 [M,C/g,kH,kW][M,C/g,kH,kW] 的卷积核。 M是输出通道数, g是分组的个数,kH是卷积核的高度,kW是卷积核的宽度。
bias (int|list|tuple) - 偏置项,形状为: [M,][M,] 。
stride (int|list|tuple,可选) - 步长大小。卷积核和输入进行卷积计算时滑动的步长。如果它是一个列表或元组,则必须包含两个整型数:(stride_height,stride_width)。若为一个整数,stride_height = stride_width = stride。默认值:1。
padding (int|list|tuple|str,可选) - 填充大小。如果它是一个字符串,可以是”VALID”或者”SAME”,表示填充算法,计算细节可参考上述
padding
= “SAME”或padding
= “VALID” 时的计算公式。如果它是一个元组或列表,它可以有3种格式:(1)包含4个二元组:当data_format
为”NCHW”时为 [[0,0], [0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right]],当data_format
为”NHWC”时为[[0,0], [padding_height_top, padding_height_bottom], [padding_width_left, padding_width_right], [0,0]];(2)包含4个整数值:[padding_height_top, padding_height_bottom, padding_width_left, padding_width_right];(3)包含2个整数值:[padding_height, padding_width],此时padding_height_top = padding_height_bottom = padding_height, padding_width_left = padding_width_right = padding_width。若为一个整数,padding_height = padding_width = padding。默认值:0。dilation (int|list|tuple,可选) - 空洞大小。空洞卷积时会使用该参数,卷积核对输入进行卷积时,感受野里每相邻两个特征点之间的空洞信息。如果空洞大小为列表或元组,则必须包含两个整型数:(dilation_height,dilation_width)。若为一个整数,dilation_height = dilation_width = dilation。默认值:1。
groups (int,可选) - 二维卷积层的组数。根据Alex Krizhevsky的深度卷积神经网络(CNN)论文中的成组卷积:当group=n,输入和卷积核分别根据通道数量平均分为n组,第一组卷积核和第一组输入进行卷积计算,第二组卷积核和第二组输入进行卷积计算,……,第n组卷积核和第n组输入进行卷积计算。默认值:1。
data_format (str,可选) - 指定输入的数据格式,输出的数据格式将与输入保持一致,可以是”NCHW”和”NHWC”。N是批尺寸,C是通道数,H是特征高度,W是特征宽度。默认值:”NCHW”。
name (str,可选) – 具体用法请参见 cn_api_guide_Name ,一般无需设置,默认值:None。
返回:4-D Tensor,数据类型与 x
一致。返回卷积的结果。
代码示例:
import paddle
import paddle.nn.functional as F
x_var = paddle.randn((2, 3, 8, 8), dtype='float32')
w_var = paddle.randn((6, 3, 3, 3), dtype='float32')
y_var = F.conv2d(x_var, w_var)
y_np = y_var.numpy()
print(y_np.shape)
# (2, 6, 6, 6)