L1Decay
paddle.fluid.regularizer.L1Decay
( regularization_coeff=0.0 )
L1Decay实现L1权重衰减正则化,用于模型训练,使得权重矩阵稀疏。
该类生成的实例对象,需要设置在 ParamAttr 或者 optimizer
(例如 SGDOptimizer )中,在 ParamAttr
中设置时, 只对该网络层中的参数生效;在 optimizer
中设置时,会对所有的参数生效;如果同时设置, 在 ParamAttr
中设置的优先级会高于在 optimizer
中设置。
具体实现中,L1权重衰减正则化的计算公式如下:
参数:
- regularization_coeff (float) – L1正则化系数,默认值为0.0。
代码示例1
import paddle.fluid as fluid
main_prog = fluid.Program()
startup_prog = fluid.Program()
with fluid.program_guard(main_prog, startup_prog):
data = fluid.layers.data(name='image', shape=[3, 28, 28], dtype='float32')
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
hidden = fluid.layers.fc(input=data, size=128, act='relu')
prediction = fluid.layers.fc(input=hidden, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=prediction, label=label)
avg_loss = fluid.layers.mean(loss)
optimizer = fluid.optimizer.Adagrad(
learning_rate=1e-4,
regularization=fluid.regularizer.L1Decay(
regularization_coeff=0.1))
optimizer.minimize(avg_loss)
代码示例2
# 在 ParamAttr 和 optimizer 中同时设置正则化
import paddle.fluid as fluid
l1 = fluid.regularizer.L1Decay(regularization_coeff=0.1)
l2 = fluid.regularizer.L2Decay(regularization_coeff=0.1)
x = fluid.layers.uniform_random([3,4])
# 在ParamAttr中设置L1正则化
w_param = fluid.ParamAttr(regularizer=l1)
hidden1 = fluid.layers.fc(x, 8, param_attr=w_param) # fc_0.w_0(L1), fc_0.b_0
hidden2 = fluid.layers.fc(hidden1, 16, param_attr=w_param) # fc_1.w_0(L1), fc_1.b_0
predict = fluid.layers.fc(hidden2, 32) # fc_3.w_0, fc_3.b_0
avg_loss = fluid.layers.mean(predict)
# 在optimizer中设置L2正则化
optimizer = fluid.optimizer.SGD(learning_rate=1e-4, regularization=l2)
optimizer.minimize(avg_loss)
# 将会打印出提示信息:
# Regularization of [fc_0.w_0, fc_1.w_0] have been set by ParamAttr or WeightNormParamAttr already.
# So, the Regularization of Optimizer will not take effect for these parameters!