ResNet
class paddle.vision.models.ResNet
( Block, depth=50, num_classes=1000, with_pool=True ) [源代码]
ResNet模型,来自论文 “Deep Residual Learning for Image Recognition” 。
参数
Block (BasicBlock|BottleneckBlock) - 模型的残差模块。
depth (int,可选) - resnet模型的深度。默认值:50
num_classes (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
with_pool (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。
返回
ResNet模型,Layer的实例。
代码示例
import paddle
from paddle.vision.models import ResNet
from paddle.vision.models.resnet import BottleneckBlock, BasicBlock
resnet50 = ResNet(BottleneckBlock, 50)
resnet18 = ResNet(BasicBlock, 18)
x = paddle.rand([1, 3, 224, 224])
out = resnet18(x)
print(out.shape)