create_py_reader_by_data
paddle.fluid.layers.create_py_reader_by_data
( capacity, feed_list, name=None, use_double_buffer=True ) [源代码]
创建一个Python端提供数据的reader。该OP与 py_reader 类似,不同点在于它能够从feed变量列表读取数据。
参数:
capacity (int) -
py_reader
维护的队列缓冲区的容量大小。单位是batch数量。若reader读取速度较快,建议设置较大的capacity
值。feed_list (list(Variable)) - feed变量列表,这些变量一般由
fluid.data()
创建。name (str,可选) – 具体用法请参见 Name ,一般无需设置,默认值为None。
use_double_buffer (bool,可选) - 是否使用双缓冲区,双缓冲区是为了预读下一个batch的数据、异步CPU -> GPU拷贝。默认值为True。
返回:能够从feed变量列表读取数据的reader,数据类型和feed变量列表中变量的数据类型相同。
返回类型:reader
代码示例:
import paddle
import paddle.fluid as fluid
import paddle.dataset.mnist as mnist
def network(img, label):
# 用户构建自定义网络,此处以一个简单的线性回归为例。
predict = fluid.layers.fc(input=img, size=10, act='softmax')
loss = fluid.layers.cross_entropy(input=predict, label=label)
return fluid.layers.mean(loss)
MEMORY_OPT = False
USE_CUDA = False
image = fluid.data(name='image', shape=[None, 1, 28, 28], dtype='float32')
label = fluid.data(name='label', shape=[None, 1], dtype='int64')
reader = fluid.layers.create_py_reader_by_data(capacity=64,
feed_list=[image, label])
reader.decorate_paddle_reader(
paddle.reader.shuffle(paddle.batch(mnist.train(), batch_size=5), buf_size=500))
img, label = fluid.layers.read_file(reader)
loss = network(img, label) # 用户构建自定义网络并返回损失函数
place = fluid.CUDAPlace(0) if USE_CUDA else fluid.CPUPlace()
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
build_strategy = fluid.BuildStrategy()
build_strategy.memory_optimize = True if MEMORY_OPT else False
exec_strategy = fluid.ExecutionStrategy()
compiled_prog = fluid.compiler.CompiledProgram(
fluid.default_main_program()).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
for epoch_id in range(2):
reader.start()
try:
while True:
exe.run(compiled_prog, fetch_list=[loss.name])
except fluid.core.EOFException:
reader.reset()