DataParallel
class paddle.fluid.dygraph.DataParallel
( layers, strategy ) [源代码]
查看属性与别名
API属性:命令式编程模式(动态图)
通过数据并行模式执行动态图模型。
目前,DataParallel
仅支持以多进程的方式执行动态图模型。使用方式如下:
python -m paddle.distributed.launch –selected_gpus=0,1 dynamic_graph_test.py
其中 dynamic_graph_test.py
脚本的代码可以是下面的示例代码。
参数
- Layer (Layer) - 需要通过数据并行方式执行的模型。
- strategy (ParallelStrategy) - 数据并行的策略,包括并行执行的环境配置。
返回
支持数据并行的 Layer
返回类型
Layer实例
代码示例
import numpy as np
import paddle.fluid as fluid
place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
with fluid.dygraph.guard(place):
# prepare the data parallel context
strategy = fluid.dygraph.prepare_context()
linear = fluid.dygraph.Linear(1, 10, act="softmax")
adam = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, parameter_list=linear.parameters())
# make the module become the data parallelism module
linear = fluid.dygraph.DataParallel(linear, strategy)
x_data = np.random.random(size=[10, 1]).astype(np.float32)
data = fluid.dygraph.to_variable(x_data)
hidden = linear(data)
avg_loss = fluid.layers.mean(hidden)
# scale the loss according to the number of trainers.
avg_loss = linear.scale_loss(avg_loss)
avg_loss.backward()
# collect the gradients of trainers.
linear.apply_collective_grads()
adam.minimize(avg_loss)
linear.clear_gradients()
scale_loss
( loss )
缩放模型损失值 loss
。在数据并行模式中,损失值 loss
需要根据并行训练进程的数目进行缩放。
如果不在数据并行模式下,会直接返回原 loss
。
参数:
- loss (Variable) - 当前模型的损失值。
返回:缩放后的损失值 loss
返回类型:Variable
代码示例
import numpy as np
import paddle.fluid as fluid
place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
with fluid.dygraph.guard(place):
# prepare the data parallel context
strategy = fluid.dygraph.prepare_context()
linear = fluid.dygraph.Linear(1, 10, act="softmax")
adam = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, parameter_list=linear.parameters())
# make the module become the data parallelism module
linear = fluid.dygraph.DataParallel(linear, strategy)
x_data = np.random.random(size=[10, 1]).astype(np.float32)
data = fluid.dygraph.to_variable(x_data)
hidden = linear(data)
avg_loss = fluid.layers.mean(hidden)
# scale the loss according to the number of trainers.
avg_loss = linear.scale_loss(avg_loss)
avg_loss.backward()
# collect the gradients of trainers.
linear.apply_collective_grads()
adam.minimize(avg_loss)
linear.clear_gradients()
apply_collective_grads
( )
AllReduce(规约)参数的梯度值。
返回:无
代码示例
import numpy as np
import paddle.fluid as fluid
place = fluid.CUDAPlace(fluid.dygraph.ParallelEnv().dev_id)
with fluid.dygraph.guard(place):
# prepare the data parallel context
strategy = fluid.dygraph.prepare_context()
linear = fluid.dygraph.Linear(1, 10, act="softmax")
adam = fluid.optimizer.AdamOptimizer(
learning_rate=0.001, parameter_list=linear.parameters())
# make the module become the data parallelism module
linear = fluid.dygraph.DataParallel(linear, strategy)
x_data = np.random.random(size=[10, 1]).astype(np.float32)
data = fluid.dygraph.to_variable(x_data)
hidden = linear(data)
avg_loss = fluid.layers.mean(hidden)
# scale the loss according to the number of trainers.
avg_loss = linear.scale_loss(avg_loss)
avg_loss.backward()
# collect the gradients of trainers.
linear.apply_collective_grads()
adam.minimize(avg_loss)
linear.clear_gradients()