调试工具
Profiler工具
Profiler 在 Lite 里分为性能 Profiler 和 精度 Profiler:
性能 Profiler :用于逐层耗时统计,可以获取到模型逐层 ARM CPU / X86 CPU / OpenCL 上kernel 耗时信息。定位耗时潜在问题;
精度 Profiler :用于逐层精度统计,可以获取到模型逐层每个 Op 的输出 tensor 精度信息。
开启方法
开启性能 Profiler: 修改根目录下
CMakeLists.txt
检索lite_option
在LITE_WITH_PROFILE
这一项,从OFF
修改为ON
;开启精度 Profiler:修改根目录下
CMakeLists.txt
检索lite_option
在LITE_WITH_PRECISION_PROFILE
这一项,从OFF
修改为ON
。
修改后,针对移动端Android平台,按照下面方式编译:
# 根据指定编译参数编译
# 默认后接参数build_opencl
# 若是arm cpu模型不影响 Profiler 结果
./lite/tools/ci_build.sh \
--arm_os=android \
--arm_abi=[armv7|armv8] \
--arm_lang=[gcc|clang] \
build_opencl
其它平台,参照文档对各平台的编译方式进行编译。
也可以不手动修改根目录下的CMakeLists.txt
,通过显式设置编译选项方式,编译出支持性能或精度 profiler 预测库。 如下编译示例展示了编译支持性能 profiler 的预测库的方法:
# 编译 Android 预测库:
./lite/tools/build_android.sh --with_opencl=ON --with_extra=ON --with_profile=ON full_publish
# 编译 macOS x86 预测库:
./lite/tools/build.sh --with_opencl=ON --with_extra=ON --with_profile=ON x86`
# 编译 Windows x86 预测库:
.\lite\tools\build_windows.bat with_extra with_profile
精度 Profiler
对每个output tensor除了有维度/设备/数据排布/精度信息外,还3个数值来表示,用于快速核验:
均值(
mean
):表示该tensor所有元素的和值除以元素个数。反应整体的平均值情况;标准差(
std_deviation
):表示该tensor距离均值的波动程度。一般来说,均值和标准差就能确定该 tensor 的正确性;序列值(
ave_grow_rate
):表示该tensor从起始元素到最后一个元素的变化情况,反应整体的序列变化情况。该值用于当两组tensor均值和标准差一样,但是序列即出现的位次不同时,该值也不同。
序列值的算法 从第二个元素起始,通过对当前元素减去前一个数并对差值除以前一个数,并将所有值累加,并将累加值除以总的元素个数。 序列值的计算过程伪代码为:
// compute ave_grow_rate of tensor output
for (size_t i = 1; i < output.length; ++i) {
ave_grow_rate += (output[i] - output[i - 1]) / (output[i - 1] + eps);
}
ave_grow_rate /= output.length;
在ADB shell环境,开启精度 Profiler 编译并运行模型如caffe_mobilenetv1_opencl.nb
,会自动打印类似如下日志:
========================================= Detailed Precision Profiler Summary =========================================
operator:(kernel_info) output_tensor_name:(tensor_info) dims mean std_deviation ave_grow_rate*
io_copy:opencl/any/any data/target_trans_1:opencl/any/NCHW {1,3,224,224} 1.000000 0.000000 0.000000
layout:opencl/any/ImageDefault data/target_trans/layout_trans_1:opencl/any/ImageDefault {1,3,224,224} 1.000000 0.000000 0.000000
conv2d:opencl/float16/ImageDefault relu1.tmp_0_1:opencl/float16/ImageDefault {1,32,112,112} 0.282844 0.240534 11.435025
conv2d:opencl/float16/ImageDefault relu2_1_dw.tmp_0_1:opencl/float16/ImageDefault {1,32,112,112} 0.274217 0.283213 95.264143
conv2d:opencl/float16/ImageDefault relu2_1_sep.tmp_0_1:opencl/float16/ImageDefault {1,64,112,112} 0.088825 0.130261 149.436979
conv2d:opencl/float16/ImageDefault relu2_2_dw.tmp_0_1:opencl/float16/ImageDefault {1,64,56,56} 0.210590 0.295913 42.604240
conv2d:opencl/float16/ImageDefault relu2_2_sep.tmp_0_1:opencl/float16/ImageDefault {1,128,56,56} 0.157238 0.139949 29.510444
conv2d:opencl/float16/ImageDefault relu3_1_dw.tmp_0_1:opencl/float16/ImageDefault {1,128,56,56} 0.212104 0.225652 106.150392
conv2d:opencl/float16/ImageDefault relu3_1_sep.tmp_0_1:opencl/float16/ImageDefault {1,128,56,56} 0.064901 0.104246 88.708513
conv2d:opencl/float16/ImageDefault relu3_2_dw.tmp_0_1:opencl/float16/ImageDefault {1,128,28,28} 0.227582 0.250818 87.952434
conv2d:opencl/float16/ImageDefault relu3_2_sep.tmp_0_1:opencl/float16/ImageDefault {1,256,28,28} 0.112293 0.103471 36.863450
conv2d:opencl/float16/ImageDefault relu4_1_dw.tmp_0_1:opencl/float16/ImageDefault {1,256,28,28} 0.113568 0.165170 231.016689
conv2d:opencl/float16/ImageDefault relu4_1_sep.tmp_0_1:opencl/float16/ImageDefault {1,256,28,28} 0.066476 0.096654 76.182087
conv2d:opencl/float16/ImageDefault relu4_2_dw.tmp_0_1:opencl/float16/ImageDefault {1,256,14,14} 0.180241 0.217738 128.105476
conv2d:opencl/float16/ImageDefault relu4_2_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.091914 0.106345 71.584000
conv2d:opencl/float16/ImageDefault relu5_1_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.083399 0.130441 388.709359
conv2d:opencl/float16/ImageDefault relu5_1_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.070037 0.084776 157.475311
conv2d:opencl/float16/ImageDefault relu5_2_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.122580 0.156354 302.641378
conv2d:opencl/float16/ImageDefault relu5_2_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.062194 0.096692 263.157857
conv2d:opencl/float16/ImageDefault relu5_3_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.151563 0.204869 521.154652
conv2d:opencl/float16/ImageDefault relu5_3_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.069662 0.117923 474.364697
conv2d:opencl/float16/ImageDefault relu5_4_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.164965 0.244008 798.295050
conv2d:opencl/float16/ImageDefault relu5_4_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.078644 0.185467 822.652575
conv2d:opencl/float16/ImageDefault relu5_5_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.195893 0.337309 929.937706
conv2d:opencl/float16/ImageDefault relu5_5_sep.tmp_0_1:opencl/float16/ImageDefault {1,512,14,14} 0.073846 0.193728 787.249412
conv2d:opencl/float16/ImageDefault relu5_6_dw.tmp_0_1:opencl/float16/ImageDefault {1,512,7,7} 0.229749 0.363817 1689.265557
conv2d:opencl/float16/ImageDefault relu5_6_sep.tmp_0_1:opencl/float16/ImageDefault {1,1024,7,7} 0.011197 0.058381 118.107636
conv2d:opencl/float16/ImageDefault relu6_dw.tmp_0_1:opencl/float16/ImageDefault {1,1024,7,7} 0.135260 0.162124 84.246188
conv2d:opencl/float16/ImageDefault relu6_sep.tmp_0_1:opencl/float16/ImageDefault {1,1024,7,7} 0.142286 0.379486 1359.996046
pool2d:opencl/float16/ImageDefault pool6.tmp_0_1:opencl/float16/ImageDefault {1,1024,1,1} 0.142280 0.314150 3670.321820
conv2d:opencl/float16/ImageDefault fc7.tmp_1_1:opencl/float16/ImageDefault {1,1000,1,1} 0.001153 1.178804 -2.516469
layout:opencl/any/NCHW fc7.tmp_1/layout_trans_1:opencl/any/NCHW {1,1000,1,1} 0.001153 1.178804 -2.516469
io_copy:opencl/any/any fc7.tmp_1/target_trans_1:host/any/NCHW {1,1000,1,1} 0.001153 1.178804 -2.516469
softmax:arm/float/NCHW prob_softmax.tmp_0_1:arm/float/NCHW {1,1000,1,1} 0.001000 0.001865 1.862140
[note]
1. `ave_grow_rate`: show the sequence value of tensor when std_dev & mean are same.
2. Enable write each output tensor to file: `export PADDLELITE_PRECISION_WRITE_TO_FILE=1` on ADB command line.
此外,若要保存每个 OP 的输出到文件,可以在ADB Shell环境里执行前加入这句export PADDLELITE_PRECISION_WRITE_TO_FILE=1
,就会将每层每个的输出写文件保存,若是多次执行则会将每次推理的结果按照PaddleLite
为前缀加时间戳的命名方式,保存在不同的文件夹里,文件夹存储路径会在日志中注明。
性能 Profiler
在ADB shell环境,开启性能 Profiler 编译并运行模型,会自动打印类似如下日志,日志分为三部分:
Detailed Dispatch Profiler Summary:单次推理的逐 OP 底层 Kernel 层运行耗时,即在
KernelBase::Run()
的前后统计耗时。会排除第一次的计时(因为第一次不准确相当于wamrup),若多次执行也会打印多次;Concise Create Profiler Summary:汇总统计的创建 Op 的耗时,即从
Instruction::Run()
开始到KernelBase::Run()
执行前。会排除掉前 10 次推理;Concise Dispatch Profiler Summary:汇总统计的运行 Op 的耗时,即在
KernelBase::Run()
的前后统计耗时,为 Lite 具体设备的底层 Kernel 层完整耗时,会排除掉前 10 次推理。
===== Detailed Dispatch Profiler Summary: N/A, Exclude 1 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Remark InDim FilterDim OutDim Avg(ms) Min(ms) Max(ms) Last(ms) Avg(%) GOPs GOPS clAvg(ms) clMin(ms) clMax(ms) clAvg(%) GlobalWorkSize LocalWorkSize
io_copy opencl/any/any HostToOpenCL type0 1x3x224x224 N/A 1x3x224x224 2.107 1.355 3.395 2.325 4.26% 0.000 0.00 2.094 1.345 3.376 2.86% N/A N/A
layout opencl/any/ImageDefault buffer_to_image2d type0 1x3x224x224 N/A 1x3x224x224 0.235 0.168 0.362 0.206 0.47% 0.000 0.00 0.281 0.207 0.330 0.38% N/A N/A
conv2d opencl/float16/ImageDefault conv2d_3x3_opt 3x3p1s2g1d1BiasRelu 1x3x224x224 32x3x3x3 1x32x112x112 1.925 1.213 2.604 2.016 3.89% 0.022 11.26 1.109 1.094 1.118 1.51% 8,23,112 1,23,7
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g32d1BiasRelu 1x32x112x112 32x1x3x3 1x32x112x112 1.448 0.819 1.911 1.531 2.93% 0.007 4.99 0.784 0.776 0.800 1.07% 8,56,112 4,56,1
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x32x112x112 64x32x1x1 1x64x112x112 1.361 1.147 1.637 1.633 2.75% 0.051 37.75 2.008 1.988 2.023 2.74% 16,28,112 1,28,7
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 3x3p1s2g64d1BiasRelu 1x64x112x112 64x1x3x3 1x64x56x56 1.206 0.946 1.595 1.395 2.44% 0.004 3.00 0.708 0.654 0.774 0.97% 16,56,56 4,56,1
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x64x56x56 128x64x1x1 1x128x56x56 1.248 0.921 1.904 1.187 2.52% 0.051 41.16 1.973 1.942 1.993 2.69% 32,14,56 1,14,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g128d1BiasRelu 1x128x56x56 128x1x3x3 1x128x56x56 1.253 1.065 1.568 1.203 2.53% 0.007 5.76 0.752 0.744 0.766 1.03% 32,28,56 1,28,7
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x128x56x56 128x128x1x1 1x128x56x56 1.278 1.093 1.649 1.207 2.58% 0.103 80.38 3.852 3.846 3.867 5.26% 32,14,56 1,14,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 3x3p1s2g128d1BiasRelu 1x128x56x56 128x1x3x3 1x128x28x28 1.311 1.145 1.426 1.277 2.65% 0.002 1.38 0.388 0.356 0.449 0.53% 32,28,28 1,28,7
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x128x28x28 256x128x1x1 1x256x28x28 1.224 1.068 1.369 1.336 2.47% 0.051 41.98 2.136 2.125 2.157 2.92% 64,7,28 1,7,28
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g256d1BiasRelu 1x256x28x28 256x1x3x3 1x256x28x28 1.458 1.108 1.995 1.452 2.95% 0.004 2.48 0.394 0.388 0.407 0.54% 64,14,28 1,14,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x256x28x28 256x256x1x1 1x256x28x28 1.382 1.016 1.806 1.334 2.80% 0.103 74.33 4.185 4.158 4.199 5.71% 64,7,28 1,7,28
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 3x3p1s2g256d1BiasRelu 1x256x28x28 256x1x3x3 1x256x14x14 1.549 0.820 1.864 1.625 3.13% 0.001 0.58 0.237 0.208 0.271 0.32% 64,14,14 1,14,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x256x14x14 512x256x1x1 1x512x14x14 1.270 0.723 1.716 1.266 2.57% 0.051 40.47 2.806 2.457 3.316 3.83% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 1.531 0.755 1.972 1.608 3.09% 0.002 1.18 0.235 0.227 0.243 0.32% 128,7,14 2,7,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 1.488 0.760 1.765 1.528 3.01% 0.103 69.07 5.528 4.851 6.542 7.54% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 1.730 1.349 1.948 1.709 3.50% 0.002 1.04 0.232 0.220 0.239 0.32% 128,7,14 2,7,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 1.843 1.412 2.694 2.173 3.73% 0.103 55.76 5.693 4.851 6.533 7.77% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 1.805 1.211 2.217 2.127 3.65% 0.002 1.00 0.234 0.227 0.247 0.32% 128,7,14 2,7,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 1.828 1.279 2.264 1.877 3.70% 0.103 56.22 5.693 4.839 6.539 7.77% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 1.901 1.477 2.335 2.184 3.84% 0.002 0.95 0.233 0.222 0.250 0.32% 128,7,14 2,7,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 1.861 1.013 2.194 2.132 3.76% 0.103 55.22 6.031 4.846 6.542 8.23% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 2.052 1.650 3.425 2.074 4.15% 0.002 0.88 0.234 0.228 0.250 0.32% 128,7,14 2,7,14
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 1.908 1.534 2.543 1.738 3.86% 0.103 53.87 5.698 4.852 6.540 7.77% 128,4,14 4,4,14
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 3x3p1s2g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x7x7 1.917 1.619 2.331 2.023 3.87% 0.000 0.24 0.171 0.159 0.190 0.23% 128,7,7 4,7,7
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x512x7x7 1024x512x1x1 1x1024x7x7 1.760 1.558 2.086 1.687 3.56% 0.051 29.19 5.348 3.213 6.516 7.30% 256,2,7 16,2,7
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 3x3p1s1g1024d1BiasRelu 1x1024x7x7 1024x1x3x3 1x1024x7x7 1.755 1.430 2.109 1.764 3.55% 0.001 0.51 0.182 0.138 0.194 0.25% 256,4,7 8,4,7
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1BiasRelu 1x1024x7x7 1024x1024x1x1 1x1024x7x7 1.773 1.488 2.062 1.488 3.58% 0.103 57.97 10.346 6.379 12.993 14.12% 256,2,7 16,2,7
pool2d opencl/float16/ImageDefault pool_avg_global globalavg 1x1024x7x7 N/A 1x1024x1x1 0.201 0.166 0.222 0.205 0.41% 0.000 0.25 0.166 0.054 0.184 0.23% N/A N/A
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 1x1p0s1g1d1Biasunk 1x1024x1x1 1000x1024x1x1 1x1000x1x1 2.149 1.828 3.388 1.954 4.35% 0.002 0.95 2.072 0.767 2.234 2.83% 250,1,1 250,1,1
layout opencl/any/NCHW image2d_to_buffer type0 1x1000x1x1 N/A 1x1000x1x1 0.184 0.168 0.221 0.171 0.37% 0.000 0.00 0.030 0.011 0.039 0.04% N/A N/A
io_copy opencl/any/any OpenCLToHost type0 1x1000x1x1 N/A 1x1000x1x1 1.460 0.744 2.007 0.744 2.95% 0.000 0.00 1.450 0.735 1.996 1.98% N/A N/A
softmax arm/float/NCHW NotImpl axis1 1x1000x1x1 N/A 1x1000x1x1 0.061 0.038 0.085 0.057 0.12% 0.000 0.10 0.000 0.000 0.000 0.00% N/A N/A
[I 2/23 18:45: 5.315 ...de/lite-doc-20210223/lite/core/program.h:195 ~RuntimeProgram]
Timing cycle = 11
===== Concise Create Profiler Summary: N/A, Exclude 10 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Avg(ms) Min(ms) Max(ms) Avg(%) GOPs CalledTimes clAvg(ms) clMin(ms) clMax(ms) clAvg(%)
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 0.240 0.240 0.240 43.48% 1.081 14 61.016 61.016 61.016 86.36%
conv2d opencl/float16/ImageDefault conv2d_3x3_opt 0.020 0.020 0.020 3.62% 0.022 1 1.094 1.094 1.094 1.55%
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 0.073 0.073 0.073 13.22% 0.007 4 1.495 1.495 1.495 2.12%
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 0.160 0.160 0.160 28.99% 0.028 9 3.258 3.258 3.258 4.61%
io_copy opencl/any/any HostToOpenCL 0.012 0.012 0.012 2.17% 0.000 1 1.366 1.366 1.366 1.93%
io_copy opencl/any/any OpenCLToHost 0.006 0.006 0.006 1.09% 0.000 1 1.920 1.920 1.920 2.72%
layout opencl/any/ImageDefault buffer_to_image2d 0.010 0.010 0.010 1.81% 0.000 1 0.292 0.292 0.292 0.41%
layout opencl/any/NCHW image2d_to_buffer 0.007 0.007 0.007 1.27% 0.000 1 0.037 0.037 0.037 0.05%
pool2d opencl/float16/ImageDefault pool_avg_global 0.015 0.015 0.015 2.72% 0.000 1 0.179 0.179 0.179 0.25%
softmax arm/float/NCHW NotImpl 0.009 0.009 0.009 1.63% 0.000 1 0.000 0.000 0.000 0.00%
[I 2/23 18:45: 5.316 ...de/lite-doc-20210223/lite/core/program.h:196 ~RuntimeProgram]
Timing cycle = 11
===== Concise Dispatch Profiler Summary: N/A, Exclude 10 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Avg(ms) Min(ms) Max(ms) Avg(%) GOPs CalledTimes clAvg(ms) clMin(ms) clMax(ms) clAvg(%)
conv2d opencl/float16/ImageDefault conv2d_1x1_simple 22.540 22.540 22.540 44.87% 1.081 14 69.537 69.537 69.537 88.19%
conv2d opencl/float16/ImageDefault conv2d_3x3_opt 2.016 2.016 2.016 4.01% 0.022 1 1.112 1.112 1.112 1.41%
conv2d opencl/float16/ImageDefault depth_conv2d_3x3 6.320 6.320 6.320 12.58% 0.007 4 1.517 1.517 1.517 1.92%
conv2d opencl/float16/ImageDefault depth_conv2d_3x3s1 15.652 15.652 15.652 31.16% 0.028 9 3.293 3.293 3.293 4.18%
io_copy opencl/any/any HostToOpenCL 2.325 2.325 2.325 4.63% 0.000 1 2.311 2.311 2.311 2.93%
io_copy opencl/any/any OpenCLToHost 0.744 0.744 0.744 1.48% 0.000 1 0.735 0.735 0.735 0.93%
layout opencl/any/ImageDefault buffer_to_image2d 0.206 0.206 0.206 0.41% 0.000 1 0.284 0.284 0.284 0.36%
layout opencl/any/NCHW image2d_to_buffer 0.171 0.171 0.171 0.34% 0.000 1 0.011 0.011 0.011 0.01%
pool2d opencl/float16/ImageDefault pool_avg_global 0.205 0.205 0.205 0.41% 0.000 1 0.054 0.054 0.054 0.07%
softmax arm/float/NCHW NotImpl 0.057 0.057 0.057 0.11% 0.000 1 0.000 0.000 0.000 0.00%
[I 2/23 18:45: 5.338 ...210223/lite/backends/opencl/cl_context.h:42 ~CLContext] release cl::Program, cl::Kernel finished.
上面是 Android 端 OpenCL 的性能 Profiler 结果,根据 KernelFuncName 可以很轻松定位到当前执行的具体哪个 CL Kernel。根据耗时百分占比,可以进一步分析潜在性能问题。下面也给出 Arm CPU 在caffe_mobilenetv1_arm.nb
模型的 Profiler 日志,作为参考:
===== Detailed Dispatch Profiler Summary: N/A, Exclude 1 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Remark InDim FilterDim OutDim Avg(ms) Min(ms) Max(ms) Last(ms) Avg(%) GOPs GOPS clAvg(ms) clMin(ms) clMax(ms) clAvg(%) GlobalWorkSize LocalWorkSize
conv2d arm/float/NCHW conv_3x3s2_direct_fp32 3x3p1s2g1d1BiasRelu 1x3x224x224 32x3x3x3 1x32x112x112 2.220 1.438 3.317 1.646 2.70% 0.022 9.77 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g32d1BiasRelu 1x32x112x112 32x1x3x3 1x32x112x112 1.128 0.710 1.512 1.036 1.37% 0.007 6.40 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x32x112x112 64x32x1x1 1x64x112x112 4.458 2.606 6.471 4.047 5.41% 0.051 11.52 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s2g64d1BiasRelu 1x64x112x112 64x1x3x3 1x64x56x56 1.127 0.652 1.663 0.744 1.37% 0.004 3.21 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x64x56x56 128x64x1x1 1x128x56x56 3.929 2.319 6.038 2.661 4.77% 0.051 13.08 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g128d1BiasRelu 1x128x56x56 128x1x3x3 1x128x56x56 1.210 0.721 1.871 0.844 1.47% 0.007 5.97 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x128x56x56 128x128x1x1 1x128x56x56 7.373 4.369 11.180 5.430 8.95% 0.103 13.94 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s2g128d1BiasRelu 1x128x56x56 128x1x3x3 1x128x28x28 0.614 0.338 0.922 0.421 0.75% 0.002 2.94 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x128x28x28 256x128x1x1 1x256x28x28 3.554 2.006 5.190 2.520 4.32% 0.051 14.46 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g256d1BiasRelu 1x256x28x28 256x1x3x3 1x256x28x28 0.584 0.341 0.887 0.421 0.71% 0.004 6.19 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x256x28x28 256x256x1x1 1x256x28x28 6.736 3.926 10.207 4.568 8.18% 0.103 15.26 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s2g256d1BiasRelu 1x256x28x28 256x1x3x3 1x256x14x14 0.370 0.202 0.549 0.232 0.45% 0.001 2.44 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x256x14x14 512x256x1x1 1x512x14x14 3.498 1.861 4.929 2.153 4.25% 0.051 14.69 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 0.391 0.208 0.545 0.239 0.47% 0.002 4.63 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 7.166 3.840 10.262 4.421 8.70% 0.103 14.34 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 0.389 0.198 0.593 0.238 0.47% 0.002 4.64 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 6.428 3.694 10.044 4.312 7.81% 0.103 15.99 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 0.337 0.199 0.530 0.222 0.41% 0.002 5.36 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 6.007 3.697 9.141 4.108 7.29% 0.103 17.11 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 0.425 0.204 1.438 0.222 0.52% 0.002 4.25 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 5.909 3.692 9.017 4.132 7.18% 0.103 17.39 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x14x14 0.325 0.199 0.531 0.220 0.40% 0.002 5.55 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x14x14 512x512x1x1 1x512x14x14 6.037 3.664 9.945 4.101 7.33% 0.103 17.02 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s2g512d1BiasRelu 1x512x14x14 512x1x3x3 1x512x7x7 0.196 0.114 0.296 0.125 0.24% 0.000 2.31 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x512x7x7 1024x512x1x1 1x1024x7x7 3.275 1.918 5.060 2.151 3.98% 0.051 15.69 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 3x3p1s1g1024d1BiasRelu 1x1024x7x7 1024x1x3x3 1x1024x7x7 0.280 0.167 0.425 0.167 0.34% 0.001 3.23 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1BiasRelu 1x1024x7x7 1024x1024x1x1 1x1024x7x7 7.273 4.147 12.180 4.264 8.83% 0.103 14.13 0.000 0.000 0.000 0.00% N/A N/A
pool2d arm/float/NCHW NotImpl globalavg 1x1024x7x7 N/A 1x1024x1x1 0.028 0.017 0.043 0.017 0.03% 0.000 1.78 0.000 0.000 0.000 0.00% N/A N/A
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 1x1p0s1g1d1Biasunk 1x1024x1x1 1000x1024x1x1 1x1000x1x1 1.060 0.666 1.296 0.858 1.29% 0.002 1.93 0.000 0.000 0.000 0.00% N/A N/A
softmax arm/float/NCHW NotImpl axis1 1x1000x1x1 N/A 1x1000x1x1 0.016 0.011 0.023 0.011 0.02% 0.000 0.38 0.000 0.000 0.000 0.00% N/A N/A
[I 2/23 18:48:24.825 ...de/lite-doc-20210223/lite/core/program.h:195 ~RuntimeProgram]
Timing cycle = 11
===== Concise Create Profiler Summary: N/A, Exclude 10 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Avg(ms) Min(ms) Max(ms) Avg(%) GOPs CalledTimes clAvg(ms) clMin(ms) clMax(ms) clAvg(%)
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 0.085 0.085 0.085 52.80% 1.081 14 0.000 0.000 0.000 0.00%
conv2d arm/float/NCHW conv_3x3s2_direct_fp32 0.006 0.006 0.006 3.73% 0.022 1 0.000 0.000 0.000 0.00%
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 0.063 0.063 0.063 39.13% 0.035 13 0.000 0.000 0.000 0.00%
pool2d arm/float/NCHW NotImpl 0.004 0.004 0.004 2.48% 0.000 1 0.000 0.000 0.000 0.00%
softmax arm/float/NCHW NotImpl 0.003 0.003 0.003 1.86% 0.000 1 0.000 0.000 0.000 0.00%
[I 2/23 18:48:24.826 ...de/lite-doc-20210223/lite/core/program.h:196 ~RuntimeProgram]
Timing cycle = 11
===== Concise Dispatch Profiler Summary: N/A, Exclude 10 warm-ups =====
OperatorType KerneAttr(Place) KernelFuncName Avg(ms) Min(ms) Max(ms) Avg(%) GOPs CalledTimes clAvg(ms) clMin(ms) clMax(ms) clAvg(%)
conv2d arm/float/NCHW conv1x1s1_gemm_fp32 49.726 49.726 49.726 87.96% 1.081 14 0.000 0.000 0.000 0.00%
conv2d arm/float/NCHW conv_3x3s2_direct_fp32 1.646 1.646 1.646 2.91% 0.022 1 0.000 0.000 0.000 0.00%
conv2d arm/float/NCHW conv_depthwise_3x3_fp32 5.131 5.131 5.131 9.08% 0.035 13 0.000 0.000 0.000 0.00%
pool2d arm/float/NCHW NotImpl 0.017 0.017 0.017 0.03% 0.000 1 0.000 0.000 0.000 0.00%
softmax arm/float/NCHW NotImpl 0.011 0.011 0.011 0.02% 0.000 1 0.000 0.000 0.000 0.00%
[I 2/23 18:48:24.833 ...10223/lite/backends/opencl/cl_runtime.cc:33 ~CLRuntime] is_cl_runtime_initialized_:1
Profiler 架构设计
Op 层信息:
struct Instruction::SetProfileRuntimeOpInfo
方法中会调用OpLite->GetOpRuntimeInfo(profile::OpCharacter*)
,由各个从OpLite
派生出的子类Op重写如./lite/operator/conv_op.h
中的class ConvOpLite : public OpLite
重写了GetOpRuntimeInfo
方法实现了对 Conv Op 信息获取;Kernel 层信息:
class KernelBase::SetProfileRuntimeKernelInfo(profile::OpCharacter* ch)
方法为虚函数,实际执行会调用由KernelBase
派生的最终子类,如class ReluCompute : public KernelLite<TARGET(kARM), PRECISION(kFloat)>
,class KernelLite
由KernelBase
派生而来,实现多态机制下的 Kernel 信息获取,如具体的底层 Kernel名。
通过在 Op 层将OpLite*
成员以void*
的形式挂载到profile::OpCharacter
,并传递给 Kernel 层,实现获取所有的 Op 层与 Kernel 层信息。
Debug工具
Lite Model Debug Tool 是用来检查Paddle-Lite框架与Paddle-Fluid框架运行时tensor(包括variable与weight)之间diff信息的基础工具。
编译方法:
参照 编译环境准备 进行环境配置和编译。
在生成的
build
目录下,执行make lite_model_debug_tool
,lite_model_debug_tool
产出在编译目录的lite/tools/debug
目录下。
工作流程:
运行
/bin/bash check_model.sh --model_dir=<your_model_path> --build_root_dir=<your_cmake_root_dir> debug_cpp_stage
获得模型在Paddle-Lite框架下的运行拓扑信息、varibles信息和weights信息。运行后拓扑信息将会存储在默认名为topo_file.txt
的文件中,variables和weights信息将会存储在默认名为tensor_cpp.txt
的文件中。运行
/bin/bash check_model.sh --model_dir=<your_model_path> --build_root_dir=<your_cmake_root_dir> debug_py_stage
执行fluid框架预测以获取相同模型在fluid框架下的variable与weight信息(注意:我们使用fluid的python api运行fluid模型,因此您在运行此步之前应确保已正确安装fluid的python api)。然后debug tool将会自动比较Paddle-Lite框架输出的信息和Paddle-Fluid框架输出的信息来检查是否存在运行时diff。 执行Paddle-Fluid框架,输出的信息将会存储在默认名为tensor_py.txt
的文件中,相应的diff信息将会存储在默认名为diff.txt
的文件中(默认情况下,只会输出执行拓扑序中第一个有diff的variable相关的信息)。
注意事项:
输出的结果是在执行完一次预测后输出的相应变量/权重的最终值,因此如果您在预测过程进行过诸如变量复用/子图融合等优化方法,则相应的输出可能会出现偏差。
默认情况下debug tools将以全1作为输入进行比对。
默认情况下,为了保证与Paddle-Fluid框架的结果可比对,debug tool将会禁用掉所有的Paddle-Lite的优化策略。
Paddle-Lite框架的执行环境由与您的编译选项有关,比如您开启了LITE_WITH_ARM编译选项,那debug tool的
debug_cpp_stage
也需要在ARM平台下运行。
Diff信息输出:
如果debug tool检测到diff信息,那么在diff.txt
中将会输出类似以下结构信息
>>>>>>>>>>>>>>>>>>DIFF VARIABLE: dropout_0.tmp_0<<<<<<<<<<<<<<<<<<<
dropout (X:pool2d_7.tmp_0) (Mask:dropout_0.tmp_1 Out:dropout_0.tmp_0)
--------------- Tensor File info ---------------
pool2d_7.tmp_0 {1,1536,1,1} 0.749892 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0150336 0.621641 0.147099 0.636727 0.0 0.0 0.00410917 0.784708 0.0 0.0704846 0.233599 0.840123 0.239201 0.112878 0.0 0.155352 0.306906 0.0 0.0 0.860938 0.221037 0.787316 0.256585 ...
dropout_0.tmp_0 {1,1536,1,1} 0.749892 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0150336 0.621641 0.147099 0.636727 0.0 0.0 0.00410917 0.784708 0.0 0.0704846 0.233599 0.840123 0.239201 0.112878 0.0 0.155352 0.306906 0.0 0.0 0.860938 0.221037 0.787316 0.256585 ...
--------------- Fluid Tensor info ---------------
pool2d_7.tmp_0 {1,1536,1,1} 0.7498912 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.015033395 0.6216395 0.14709876 0.63672537 0.0 0.0 0.0041093696 0.7847073 0.0 0.07048465 0.23359808 0.8401219 0.23919891 0.1128789 0.0 0.1553514 0.3069055 0.0 0.0 0.8609365 0.22103554 ...
dropout_0.tmp_0 {1,1536,1,1} 0.599913 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.012026716 0.4973116 0.117679015 0.5093803 0.0 0.0 0.0032874958 0.62776583 0.0 0.056387722 0.18687847 0.67209756 0.19135913 0.090303116 0.0 0.12428112 0.2455244 0.0 0.0 0.68874925 ...
其中第二行为op相关信息,标明了执行哪个op出现了diff及其对应的输入输出变量名。Tensor File info为Paddle-Lite框架的输出信息,而Fluid Tensor info为Paddle-Fluid框架的相应输出信息。 示例中的dropout_0.tmp_1
没有相应的tensor信息是因为工具检测到其在预测的后序流程中未被使用,因此不会对预测结果造成影响,从而将其自动屏蔽掉以保证输出尽量简洁。
其他选项:
Option | Description |
---|---|
—input_file | 输入文件名,不同field以逗号分隔,相同field内以空格分隔, 只有文件中的第一行输入信息会被使用. 如果您不指定input_file,那么所有输入将会被置为1。注意:debug_py_stage 目前不支持多field输入。 |
—cpp_topo_file | 存储运行时拓扑信息,由debug_cpp_stage 写入并且由debug_py_stage 读取使用。 默认为topo_file.txt 。 |
—cpp_tensor_file | 存储debug_cpp_stage 在运行拓扑序下的输出信息,默认为 tensor_cpp.txt 。 |
—tensor_names | 如果此选项不为空,那么只输出由此选项中指定名字的variable/weight信息,名字间用逗号分隔。 |
—tensor_output_length | 输出数据的长度,默认为全部输出。 |
—py_threshold | 判断diff发生的阈值,默认为 1e-5 。 |
—py_tensor_file | 存储debug_py_stage 在运行拓扑序下的输出信息,默认为tensor_py.txt . |
—py_output_file | diff信息的存储文件,默认为diff.txt 。 |
—py_only_output_first_diff | 是否只输出运行时拓扑序中第一个有diff的var/op信息,默认为true |
您可以参考 check_model.sh
脚本中的代码以获得更多细节.