Using Vega
Vega and Vega-Lite are open-source, declarative language visualization tools that you can use to create custom data visualizations with your OpenSearch data and Vega Data. These tools are ideal for advanced users comfortable with writing OpenSearch queries directly. Enable the vis_type_vega
plugin in your opensearch_dashboards.yml
file to write your Vega specifications in either JSON or HJSON format or to specify one or more OpenSearch queries within your Vega specification. By default, the plugin is set to true
. The configuration is shown in the following example. For configuration details, refer to the vis_type_vega
README.
vis_type_vega.enabled: true
The following image shows a custom Vega map created in OpenSearch.
Querying from multiple data sources
If you have configured multiple data sources in OpenSearch Dashboards, you can use Vega to query those data sources. Within your Vega specification, add the data_source_name
field under the url
property to target a specific data source by name. By default, queries use data from the local cluster. You can assign individual data_source_name
values to each OpenSearch query within your Vega specification. This allows you to query multiple indexes across different data sources in a single visualization.
The following is an example Vega specification with Demo US Cluster
as the specified data_source_name
:
{
$schema: https://vega.github.io/schema/vega/v5.json
config: {
kibana: {type: "map", latitude: 25, longitude: -70, zoom: 3}
}
data: [
{
name: table
url: {
index: opensearch_dashboards_sample_data_flights
// This OpenSearchQuery will query from the Demo US Cluster datasource
data_source_name: Demo US Cluster
%context%: true
// Uncomment to enable time filtering
// %timefield%: timestamp
body: {
size: 0
aggs: {
origins: {
terms: {field: "OriginAirportID", size: 10000}
aggs: {
originLocation: {
top_hits: {
size: 1
_source: {
includes: ["OriginLocation", "Origin"]
}
}
}
distinations: {
terms: {field: "DestAirportID", size: 10000}
aggs: {
destLocation: {
top_hits: {
size: 1
_source: {
includes: ["DestLocation"]
}
}
}
}
}
}
}
}
}
}
format: {property: "aggregations.origins.buckets"}
transform: [
{
type: geopoint
projection: projection
fields: [
originLocation.hits.hits[0]._source.OriginLocation.lon
originLocation.hits.hits[0]._source.OriginLocation.lat
]
}
]
}
{
name: selectedDatum
on: [
{trigger: "!selected", remove: true}
{trigger: "selected", insert: "selected"}
]
}
]
signals: [
{
name: selected
value: null
on: [
{events: "@airport:mouseover", update: "datum"}
{events: "@airport:mouseout", update: "null"}
]
}
]
scales: [
{
name: airportSize
type: linear
domain: {data: "table", field: "doc_count"}
range: [
{signal: "zoom*zoom*0.2+1"}
{signal: "zoom*zoom*10+1"}
]
}
]
marks: [
{
type: group
from: {
facet: {
name: facetedDatum
data: selectedDatum
field: distinations.buckets
}
}
data: [
{
name: facetDatumElems
source: facetedDatum
transform: [
{
type: geopoint
projection: projection
fields: [
destLocation.hits.hits[0]._source.DestLocation.lon
destLocation.hits.hits[0]._source.DestLocation.lat
]
}
{type: "formula", expr: "{x:parent.x, y:parent.y}", as: "source"}
{type: "formula", expr: "{x:datum.x, y:datum.y}", as: "target"}
{type: "linkpath", shape: "diagonal"}
]
}
]
scales: [
{
name: lineThickness
type: log
clamp: true
range: [1, 8]
}
{
name: lineOpacity
type: log
clamp: true
range: [0.2, 0.8]
}
]
marks: [
{
from: {data: "facetDatumElems"}
type: path
interactive: false
encode: {
update: {
path: {field: "path"}
stroke: {value: "black"}
strokeWidth: {scale: "lineThickness", field: "doc_count"}
strokeOpacity: {scale: "lineOpacity", field: "doc_count"}
}
}
}
]
}
{
name: airport
type: symbol
from: {data: "table"}
encode: {
update: {
size: {scale: "airportSize", field: "doc_count"}
xc: {signal: "datum.x"}
yc: {signal: "datum.y"}
tooltip: {
signal: "{title: datum.originLocation.hits.hits[0]._source.Origin + ' (' + datum.key + ')', connnections: length(datum.distinations.buckets), flights: datum.doc_count}"
}
}
}
}
]
}
copy