CSV processor
The csv
processor is used to parse CSVs and store them as individual fields in a document. The processor ignores empty fields.
Syntax
The following is the syntax for the csv
processor:
{
"csv": {
"field": "field_name",
"target_fields": ["field1, field2, ..."]
}
}
copy
Configuration parameters
The following table lists the required and optional parameters for the csv
processor.
Parameter | Required/Optional | Description |
---|---|---|
field | Required | The name of the field containing the data to be converted. Supports template snippets. |
target_fields | Required | The name of the field in which to store the parsed data. |
description | Optional | A brief description of the processor. |
empty_value | Optional | Represents optional parameters that are not required or are not applicable. |
if | Optional | A condition for running the processor. |
ignore_failure | Optional | Specifies whether the processor continues execution even if it encounters errors. If set to true , failures are ignored. Default is false . |
ignore_missing | Optional | Specifies whether the processor should ignore documents that do not contain the specified field. If set to true , the processor does not modify the document if the field does not exist or is null . Default is false . |
on_failure | Optional | A list of processors to run if the processor fails. |
quote | Optional | The character used to quote fields in the CSV data. Default is “ . |
separator | Optional | The delimiter used to separate the fields in the CSV data. Default is , . |
tag | Optional | An identifier tag for the processor. Useful for debugging in order to distinguish between processors of the same type. |
trim | Optional | If set to true , the processor trims white space from the beginning and end of the text. Default is false . |
Using the processor
Follow these steps to use the processor in a pipeline.
Step 1: Create a pipeline
The following query creates a pipeline, named csv-processor
, that splits resource_usage
into three new fields named cpu_usage
, memory_usage
, and disk_usage
:
PUT _ingest/pipeline/csv-processor
{
"description": "Split resource usage into individual fields",
"processors": [
{
"csv": {
"field": "resource_usage",
"target_fields": ["cpu_usage", "memory_usage", "disk_usage"],
"separator": ","
}
}
]
}
copy
Step 2 (Optional): Test the pipeline
It is recommended that you test your pipeline before you ingest documents.
To test the pipeline, run the following query:
POST _ingest/pipeline/csv-processor/_simulate
{
"docs": [
{
"_index": "testindex1",
"_id": "1",
"_source": {
"resource_usage": "25,4096,10",
"memory_usage": "4096",
"disk_usage": "10",
"cpu_usage": "25"
}
}
]
}
copy
Response
The following example response confirms that the pipeline is working as expected:
{
"docs": [
{
"doc": {
"_index": "testindex1",
"_id": "1",
"_source": {
"memory_usage": "4096",
"disk_usage": "10",
"resource_usage": "25,4096,10",
"cpu_usage": "25"
},
"_ingest": {
"timestamp": "2023-08-22T16:40:45.024796379Z"
}
}
}
]
}
Step 3: Ingest a document
The following query ingests a document into an index named testindex1
:
PUT testindex1/_doc/1?pipeline=csv-processor
{
"resource_usage": "25,4096,10"
}
copy
Step 4 (Optional): Retrieve the document
To retrieve the document, run the following query:
GET testindex1/_doc/1
copy