This version of the OpenSearch documentation is no longer maintained. For the latest version, see the current documentation. For information about OpenSearch version maintenance, see Release Schedule and Maintenance Policy.
CSV
The csv
processor is used to parse CSVs and store them as individual fields in a document. The processor ignores empty fields. The following is the syntax for the csv
processor:
{
"csv": {
"field": "field_name",
"target_fields": ["field1, field2, ..."]
}
}
copy
Configuration parameters
The following table lists the required and optional parameters for the csv
processor.
Parameter | Required | Description |
---|---|---|
field | Required | The name of the field that contains the data to be converted. Supports template snippets. |
target_fields | Required | The name of the field in which to store the parsed data. |
description | Optional | A brief description of the processor. |
empty_value | Optional | Represents optional parameters that are not required or are not applicable. |
if | Optional | A condition for running this processor. |
ignore_failure | Optional | If set to true , failures are ignored. Default is false . |
ignore_missing | Optional | If set to true , the processor will not fail if the field does not exist. Default is true . |
on_failure | Optional | A list of processors to run if the processor fails. |
quote | Optional | The character used to quote fields in the CSV data. Default is “ . |
separator | Optional | The delimiter used to separate the fields in the CSV data. Default is , . |
tag | Optional | An identifier tag for the processor. Useful for debugging to distinguish between processors of the same type. |
trim | Optional | If set to true , the processor trims white space from the beginning and end of the text. Default is false . |
Using the processor
Follow these steps to use the processor in a pipeline.
Step 1: Create a pipeline.
The following query creates a pipeline, named csv-processor
, that splits resource_usage
into three new fields named cpu_usage
, memory_usage
, and disk_usage
:
PUT _ingest/pipeline/csv-processor
{
"description": "Split resource usage into individual fields",
"processors": [
{
"csv": {
"field": "resource_usage",
"target_fields": ["cpu_usage", "memory_usage", "disk_usage"],
"separator": ","
}
}
]
}
copy
Step 2 (Optional): Test the pipeline.
It is recommended that you test your pipeline before you ingest documents.
To test the pipeline, run the following query:
POST _ingest/pipeline/csv-processor/_simulate
{
"docs": [
{
"_index": "testindex1",
"_id": "1",
"_source": {
"resource_usage": "25,4096,10",
"memory_usage": "4096",
"disk_usage": "10",
"cpu_usage": "25"
}
}
]
}
copy
Response
The following example response confirms that the pipeline is working as expected:
{
"docs": [
{
"doc": {
"_index": "testindex1",
"_id": "1",
"_source": {
"memory_usage": "4096",
"disk_usage": "10",
"resource_usage": "25,4096,10",
"cpu_usage": "25"
},
"_ingest": {
"timestamp": "2023-08-22T16:40:45.024796379Z"
}
}
}
]
}
Step 3: Ingest a document.
The following query ingests a document into an index named testindex1
:
PUT testindex1/_doc/1?pipeline=csv-processor
{
"resource_usage": "25,4096,10"
}
copy
Step 4 (Optional): Retrieve the document.
To retrieve the document, run the following query:
GET testindex1/_doc/1
copy