Scheduling Windows container workloads
You can schedule Windows workloads to Windows compute nodes.
Prerequisites
You installed the Windows Machine Config Operator (WMCO) using Operator Lifecycle Manager (OLM).
You are using a Windows container as the OS image.
You have created a Windows compute machine set.
Windows pod placement
Before deploying your Windows workloads to the cluster, you must configure your Windows node scheduling so pods are assigned correctly. Since you have a machine hosting your Windows node, it is managed the same as a Linux-based node. Likewise, scheduling a Windows pod to the appropriate Windows node is completed similarly, using mechanisms like taints, tolerations, and node selectors.
With multiple operating systems, and the ability to run multiple Windows OS variants in the same cluster, you must map your Windows pods to a base Windows OS variant by using a RuntimeClass
object. For example, if you have multiple Windows nodes running on different Windows Server container versions, the cluster could schedule your Windows pods to an incompatible Windows OS variant. You must have RuntimeClass
objects configured for each Windows OS variant on your cluster. Using a RuntimeClass
object is also recommended if you have only one Windows OS variant available in your cluster.
For more information, see Microsoft’s documentation on Host and container version compatibility.
Also, it is recommended that you set the spec.os.name.windows
parameter in your workload pods. The Windows Machine Config Operator (WMCO) uses this field to authoritatively identify the pod operating system for validation and is used to enforce Windows-specific pod security context constraints (SCCs). Currently, this parameter has no effect on pod scheduling. For more information about this parameter, see the Kubernetes Pods documentation.
The container base image must be the same Windows OS version and build number that is running on the node where the conainer is to be scheduled. Also, if you upgrade the Windows nodes from one version to another, for example going from 20H2 to 2022, you must upgrade your container base image to match the new version. For more information, see Windows container version compatibility. |
Additional resources
Creating a RuntimeClass object to encapsulate scheduling mechanisms
Using a RuntimeClass
object simplifies the use of scheduling mechanisms like taints and tolerations; you deploy a runtime class that encapsulates your taints and tolerations and then apply it to your pods to schedule them to the appropriate node. Creating a runtime class is also necessary in clusters that support multiple operating system variants.
Procedure
Create a
RuntimeClass
object YAML file. For example,runtime-class.yaml
:apiVersion: node.k8s.io/v1beta1
kind: RuntimeClass
metadata:
name: <runtime_class_name> (1)
handler: 'runhcs-wcow-process'
scheduling:
nodeSelector: (2)
kubernetes.io/os: 'windows'
kubernetes.io/arch: 'amd64'
node.kubernetes.io/windows-build: '10.0.17763'
tolerations: (3)
- effect: NoSchedule
key: os
operator: Equal
value: "Windows"
1 Specify the RuntimeClass
object name, which is defined in the pods you want to be managed by this runtime class.2 Specify labels that must be present on nodes that support this runtime class. Pods using this runtime class can only be scheduled to a node matched by this selector. The node selector of the runtime class is merged with the existing node selector of the pod. Any conflicts prevent the pod from being scheduled to the node. 3 Specify tolerations to append to pods, excluding duplicates, running with this runtime class during admission. This combines the set of nodes tolerated by the pod and the runtime class. Create the
RuntimeClass
object:$ oc create -f <file-name>.yaml
For example:
$ oc create -f runtime-class.yaml
Apply the
RuntimeClass
object to your pod to ensure it is scheduled to the appropriate operating system variant:apiVersion: v1
kind: Pod
metadata:
name: my-windows-pod
spec:
runtimeClassName: <runtime_class_name> (1)
...
1 Specify the runtime class to manage the scheduling of your pod.
Sample Windows container workload deployment
You can deploy Windows container workloads to your cluster once you have a Windows compute node available.
This sample deployment is provided for reference only. |
Example Service
object
apiVersion: v1
kind: Service
metadata:
name: win-webserver
labels:
app: win-webserver
spec:
ports:
# the port that this service should serve on
- port: 80
targetPort: 80
selector:
app: win-webserver
type: LoadBalancer
Example Deployment
object
apiVersion: apps/v1
kind: Deployment
metadata:
labels:
app: win-webserver
name: win-webserver
spec:
selector:
matchLabels:
app: win-webserver
replicas: 1
template:
metadata:
labels:
app: win-webserver
name: win-webserver
spec:
tolerations:
- key: "os"
value: "Windows"
Effect: "NoSchedule"
containers:
- name: windowswebserver
image: mcr.microsoft.com/windows/servercore:ltsc2019
imagePullPolicy: IfNotPresent
command:
- powershell.exe
- -command
- $listener = New-Object System.Net.HttpListener; $listener.Prefixes.Add('http://*:80/'); $listener.Start();Write-Host('Listening at http://*:80/'); while ($listener.IsListening) { $context = $listener.GetContext(); $response = $context.Response; $content='<html><body><H1>Red Hat OpenShift + Windows Container Workloads</H1></body></html>'; $buffer = [System.Text.Encoding]::UTF8.GetBytes($content); $response.ContentLength64 = $buffer.Length; $response.OutputStream.Write($buffer, 0, $buffer.Length); $response.Close(); };
securityContext:
runAsNonRoot: false
windowsOptions:
runAsUserName: "ContainerAdministrator"
nodeSelector:
kubernetes.io/os: windows
os:
name: windows
When using the |
Scaling a compute machine set manually
To add or remove an instance of a machine in a compute machine set, you can manually scale the compute machine set.
This guidance is relevant to fully automated, installer-provisioned infrastructure installations. Customized, user-provisioned infrastructure installations do not have compute machine sets.
Prerequisites
Install an OKD cluster and the
oc
command line.Log in to
oc
as a user withcluster-admin
permission.
Procedure
View the compute machine sets that are in the cluster by running the following command:
$ oc get machinesets -n openshift-machine-api
The compute machine sets are listed in the form of
<clusterid>-worker-<aws-region-az>
.View the compute machines that are in the cluster by running the following command:
$ oc get machine -n openshift-machine-api
Set the annotation on the compute machine that you want to delete by running the following command:
$ oc annotate machine/<machine_name> -n openshift-machine-api machine.openshift.io/delete-machine="true"
Scale the compute machine set by running one of the following commands:
$ oc scale --replicas=2 machineset <machineset> -n openshift-machine-api
Or:
$ oc edit machineset <machineset> -n openshift-machine-api
You can alternatively apply the following YAML to scale the compute machine set:
apiVersion: machine.openshift.io/v1beta1
kind: MachineSet
metadata:
name: <machineset>
namespace: openshift-machine-api
spec:
replicas: 2
You can scale the compute machine set up or down. It takes several minutes for the new machines to be available.
By default, the machine controller tries to drain the node that is backed by the machine until it succeeds. In some situations, such as with a misconfigured pod disruption budget, the drain operation might not be able to succeed. If the drain operation fails, the machine controller cannot proceed removing the machine.
You can skip draining the node by annotating
machine.openshift.io/exclude-node-draining
in a specific machine.
Verification
Verify the deletion of the intended machine by running the following command:
$ oc get machines