- Installing a cluster on GCP into a shared VPC
- Prerequisites
- Generating a key pair for cluster node SSH access
- Obtaining the installation program
- Creating the installation files for GCP
- Installing the OpenShift CLI by downloading the binary
- Alternatives to storing administrator-level secrets in the kube-system project
- Deploying the cluster
- Logging in to the cluster by using the CLI
- Next steps
Installing a cluster on GCP into a shared VPC
In OKD version 4.14, you can install a cluster into a shared Virtual Private Cloud (VPC) on Google Cloud Platform (GCP). In this installation method, the cluster is configured to use a VPC from a different GCP project. A shared VPC enables an organization to connect resources from multiple projects to a common VPC network. You can communicate within the organization securely and efficiently by using internal IP addresses from that network. For more information about shared VPC, see Shared VPC overview in the GCP documentation.
The installation program provisions the rest of the required infrastructure, which you can further customize. To customize the installation, you modify parameters in the install-config.yaml
file before you install the cluster.
Prerequisites
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
You have a GCP host project which contains a shared VPC network.
You configured a GCP project to host the cluster. This project, known as the service project, must be attached to the host project. For more information, see Attaching service projects in the GCP documentation.
You have a GCP service account that has the required GCP permissions in both the host and service projects.
Generating a key pair for cluster node SSH access
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 Specify the path and file name, such as ~/.ssh/id_ed25519
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.If you plan to install an OKD cluster that uses the Fedora cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64
,ppc64le
, ands390x
architectures, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_ed25519.pub
public key:$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.On some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> (1)
1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
- When you install OKD, provide the SSH public key to the installation program.
Obtaining the installation program
Before you install OKD, download the installation file on the host you are using for installation.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space.
Procedure
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use
{"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.If you do not use the pull secret from the Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
Creating the installation files for GCP
To install OKD on Google Cloud Platform (GCP) into a shared VPC, you must generate the install-config.yaml
file and modify it so that the cluster uses the correct VPC networks, DNS zones, and project names.
Manually creating the installation configuration file
You must manually create your installation configuration file when installing OKD on GCP into a shared VPC using installer-provisioned infrastructure.
Prerequisites
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.
Customize the sample
install-config.yaml
file template that is provided and save it in the<installation_directory>
.You must name this configuration file
install-config.yaml
.The
ImageContentSourcePolicy
file is generated as an output ofoc mirror
after the mirroring process is finished.The
oc mirror
command generates anImageContentSourcePolicy
file which contains the YAML needed to defineImageContentSourcePolicy
. Copy the text from this file and paste it into yourinstall-config.yaml
file.You must run the ‘oc mirror’ command twice. The first time you run the
oc mirror
command, you get a fullImageContentSourcePolicy
file. The second time you run theoc mirror
command, you only get the difference between the first and second run. Because of this behavior, you must always keep a backup of these files in case you need to merge them into one completeImageContentSourcePolicy
file. Keeping a backup of these two output files ensures that you have a completeImageContentSourcePolicy
file.
Back up the
install-config.yaml
file so that you can use it to install multiple clusters.The
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
Additional resources
Enabling Shielded VMs
You can use Shielded VMs when installing your cluster. Shielded VMs have extra security features including secure boot, firmware and integrity monitoring, and rootkit detection. For more information, see Google’s documentation on Shielded VMs.
Shielded VMs are currently not supported on clusters with 64-bit ARM infrastructures. |
Prerequisites
- You have created an
install-config.yaml
file.
Procedure
Use a text editor to edit the
install-config.yaml
file prior to deploying your cluster and add one of the following stanzas:To use shielded VMs for only control plane machines:
controlPlane:
platform:
gcp:
secureBoot: Enabled
To use shielded VMs for only compute machines:
compute:
- platform:
gcp:
secureBoot: Enabled
To use shielded VMs for all machines:
platform:
gcp:
defaultMachinePlatform:
secureBoot: Enabled
Enabling Confidential VMs
You can use Confidential VMs when installing your cluster. Confidential VMs encrypt data while it is being processed. For more information, see Google’s documentation on Confidential Computing. You can enable Confidential VMs and Shielded VMs at the same time, although they are not dependent on each other.
Confidential VMs are currently not supported on 64-bit ARM architectures. |
Prerequisites
- You have created an
install-config.yaml
file.
Procedure
Use a text editor to edit the
install-config.yaml
file prior to deploying your cluster and add one of the following stanzas:To use confidential VMs for only control plane machines:
controlPlane:
platform:
gcp:
confidentialCompute: Enabled (1)
type: n2d-standard-8 (2)
onHostMaintenance: Terminate (3)
1 Enable confidential VMs. 2 Specify a machine type that supports Confidential VMs. Confidential VMs require the N2D or C2D series of machine types. For more information on supported machine types, see Supported operating systems and machine types. 3 Specify the behavior of the VM during a host maintenance event, such as a hardware or software update. For a machine that uses Confidential VM, this value must be set to Terminate
, which stops the VM. Confidential VMs do not support live VM migration.To use confidential VMs for only compute machines:
compute:
- platform:
gcp:
confidentialCompute: Enabled
type: n2d-standard-8
onHostMaintenance: Terminate
To use confidential VMs for all machines:
platform:
gcp:
defaultMachinePlatform:
confidentialCompute: Enabled
type: n2d-standard-8
onHostMaintenance: Terminate
Sample customized install-config.yaml file for shared VPC installation
There are several configuration parameters which are required to install OKD on GCP using a shared VPC. The following is a sample install-config.yaml
file which demonstrates these fields.
This sample YAML file is provided for reference only. You must modify this file with the correct values for your environment and cluster. |
apiVersion: v1
baseDomain: example.com
credentialsMode: Passthrough (1)
metadata:
name: cluster_name
platform:
gcp:
computeSubnet: shared-vpc-subnet-1 (2)
controlPlaneSubnet: shared-vpc-subnet-2 (3)
network: shared-vpc (4)
networkProjectID: host-project-name (5)
projectID: service-project-name (6)
region: us-east1
defaultMachinePlatform:
tags: (7)
- global-tag1
controlPlane:
name: master
platform:
gcp:
tags: (7)
- control-plane-tag1
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
replicas: 3
compute:
- name: worker
platform:
gcp:
tags: (7)
- compute-tag1
type: n2-standard-4
zones:
- us-central1-a
- us-central1-c
replicas: 3
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
pullSecret: '{"auths": ...}'
sshKey: ssh-ed25519 AAAA... (8)
1 | credentialsMode must be set to Passthrough or Manual . See the “Prerequisites” section for the required GCP permissions that your service account must have. |
2 | The name of the subnet in the shared VPC for compute machines to use. |
3 | The name of the subnet in the shared VPC for control plane machines to use. |
4 | The name of the shared VPC. |
5 | The name of the host project where the shared VPC exists. |
6 | The name of the GCP project where you want to install the cluster. |
7 | Optional. One or more network tags to apply to compute machines, control plane machines, or all machines. |
8 | You can optionally provide the sshKey value that you use to access the machines in your cluster. |
Configuring the cluster-wide proxy during installation
Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml
file.
Prerequisites
You have an existing
install-config.yaml
file.You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the
Proxy
object’sspec.noProxy
field to bypass the proxy if necessary.The
Proxy
objectstatus.noProxy
field is populated with the values of thenetworking.machineNetwork[].cidr
,networking.clusterNetwork[].cidr
, andnetworking.serviceNetwork[]
fields from your installation configuration.For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the
Proxy
objectstatus.noProxy
field is also populated with the instance metadata endpoint (169.254.169.254
).
Procedure
Edit your
install-config.yaml
file and add the proxy settings. For example:apiVersion: v1
baseDomain: my.domain.com
proxy:
httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
noProxy: example.com (3)
additionalTrustBundle: | (4)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
1 A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http
.2 A proxy URL to use for creating HTTPS connections outside the cluster. 3 A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with .
to match subdomains only. For example,.y.com
matchesx.y.com
, but noty.com
. Use*
to bypass the proxy for all destinations.4 If provided, the installation program generates a config map that is named user-ca-bundle
in theopenshift-config
namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates atrusted-ca-bundle
config map that merges these contents with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in thetrustedCA
field of theProxy
object. TheadditionalTrustBundle
field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle.5 Optional: The policy to determine the configuration of the Proxy
object to reference theuser-ca-bundle
config map in thetrustedCA
field. The allowed values areProxyonly
andAlways
. UseProxyonly
to reference theuser-ca-bundle
config map only whenhttp/https
proxy is configured. UseAlways
to always reference theuser-ca-bundle
config map. The default value isProxyonly
.The installation program does not support the proxy
readinessEndpoints
field.If the installer times out, restart and then complete the deployment by using the
wait-for
command of the installer. For example:$ ./openshift-install wait-for install-complete —log-level debug
Save the file and reference it when installing OKD.
The installation program creates a cluster-wide proxy that is named cluster
that uses the proxy settings in the provided install-config.yaml
file. If no proxy settings are provided, a cluster
Proxy
object is still created, but it will have a nil spec
.
Only the |
Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) to interact with OKD from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack the archive:
$ tar xvf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.zip
.Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
Alternatives to storing administrator-level secrets in the kube-system project
By default, administrator secrets are stored in the kube-system
project. If you configured the credentialsMode
parameter in the install-config.yaml
file to Manual
, you must use one of the following alternatives:
To manage long-term cloud credentials manually, follow the procedure in Manually creating long-term credentials.
To implement short-term credentials that are managed outside the cluster for individual components, follow the procedures in Configuring a GCP cluster to use short-term credentials.
Manually creating long-term credentials
The Cloud Credential Operator (CCO) can be put into manual mode prior to installation in environments where the cloud identity and access management (IAM) APIs are not reachable, or the administrator prefers not to store an administrator-level credential secret in the cluster kube-system
namespace.
Procedure
If you did not set the
credentialsMode
parameter in theinstall-config.yaml
configuration file toManual
, modify the value as shown:Sample configuration file snippet
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests
Set a
$RELEASE_IMAGE
variable with the release image from your installation file by running the following command:$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of
CredentialsRequest
custom resources (CRs) from the OKD release image by running the following command:$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 The —included
parameter includes only the manifests that your specific cluster configuration requires.2 Specify the location of the install-config.yaml
file.3 Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.This command creates a YAML file for each
CredentialsRequest
object.Sample
CredentialsRequest
objectapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: GCPProviderSpec
predefinedRoles:
- roles/storage.admin
- roles/iam.serviceAccountUser
skipServiceCheck: true
...
Create YAML files for secrets in the
openshift-install
manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in thespec.secretRef
for eachCredentialsRequest
object.Sample
CredentialsRequest
object with secretsapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
...
secretRef:
name: <component_secret>
namespace: <component_namespace>
...
Sample
Secret
objectapiVersion: v1
kind: Secret
metadata:
name: <component_secret>
namespace: <component_namespace>
data:
service_account.json: <base64_encoded_gcp_service_account_file>
Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. |
Configuring a GCP cluster to use short-term credentials
To install a cluster that is configured to use GCP Workload Identity, you must configure the CCO utility and create the required GCP resources for your cluster.
Configuring the Cloud Credential Operator utility
To create and manage cloud credentials from outside of the cluster when the Cloud Credential Operator (CCO) is operating in manual mode, extract and prepare the CCO utility (ccoctl
) binary.
The |
Prerequisites
You have access to an OKD account with cluster administrator access.
You have installed the OpenShift CLI (
oc
).
Procedure
Obtain the OKD release image by running the following command:
$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Obtain the CCO container image from the OKD release image by running the following command:
$ CCO_IMAGE=$(oc adm release info --image-for='cloud-credential-operator' $RELEASE_IMAGE -a ~/.pull-secret)
Ensure that the architecture of the
$RELEASE_IMAGE
matches the architecture of the environment in which you will use theccoctl
tool.Extract the
ccoctl
binary from the CCO container image within the OKD release image by running the following command:$ oc image extract $CCO_IMAGE --file="/usr/bin/ccoctl" -a ~/.pull-secret
Change the permissions to make
ccoctl
executable by running the following command:$ chmod 775 ccoctl
Verification
To verify that
ccoctl
is ready to use, display the help file by running the following command:$ ccoctl --help
Output of
ccoctl --help
OpenShift credentials provisioning tool
Usage:
ccoctl [command]
Available Commands:
alibabacloud Manage credentials objects for alibaba cloud
aws Manage credentials objects for AWS cloud
azure Manage credentials objects for Azure
gcp Manage credentials objects for Google cloud
help Help about any command
ibmcloud Manage credentials objects for IBM Cloud
nutanix Manage credentials objects for Nutanix
Flags:
-h, --help help for ccoctl
Use "ccoctl [command] --help" for more information about a command.
Creating GCP resources with the Cloud Credential Operator utility
You can use the ccoctl gcp create-all
command to automate the creation of GCP resources.
By default, |
Prerequisites
You must have:
- Extracted and prepared the
ccoctl
binary.
Procedure
Set a
$RELEASE_IMAGE
variable with the release image from your installation file by running the following command:$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of
CredentialsRequest
objects from the OKD release image by running the following command:$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 The —included
parameter includes only the manifests that your specific cluster configuration requires.2 Specify the location of the install-config.yaml
file.3 Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.This command might take a few moments to run.
Use the
ccoctl
tool to process allCredentialsRequest
objects by running the following command:$ ccoctl gcp create-all \
--name=<name> \(1)
--region=<gcp_region> \(2)
--project=<gcp_project_id> \(3)
--credentials-requests-dir=<path_to_credentials_requests_directory> (4)
1 Specify the user-defined name for all created GCP resources used for tracking. 2 Specify the GCP region in which cloud resources will be created. 3 Specify the GCP project ID in which cloud resources will be created. 4 Specify the directory containing the files of CredentialsRequest
manifests to create GCP service accounts.If your cluster uses Technology Preview features that are enabled by the
TechPreviewNoUpgrade
feature set, you must include the—enable-tech-preview
parameter.
Verification
To verify that the OKD secrets are created, list the files in the
<path_to_ccoctl_output_dir>/manifests
directory:$ ls <path_to_ccoctl_output_dir>/manifests
Example output
cluster-authentication-02-config.yaml
openshift-cloud-controller-manager-gcp-ccm-cloud-credentials-credentials.yaml
openshift-cloud-credential-operator-cloud-credential-operator-gcp-ro-creds-credentials.yaml
openshift-cloud-network-config-controller-cloud-credentials-credentials.yaml
openshift-cluster-csi-drivers-gcp-pd-cloud-credentials-credentials.yaml
openshift-image-registry-installer-cloud-credentials-credentials.yaml
openshift-ingress-operator-cloud-credentials-credentials.yaml
openshift-machine-api-gcp-cloud-credentials-credentials.yaml
You can verify that the IAM service accounts are created by querying GCP. For more information, refer to GCP documentation on listing IAM service accounts.
Incorporating the Cloud Credential Operator utility manifests
To implement short-term security credentials managed outside the cluster for individual components, you must move the manifest files that the Cloud Credential Operator utility (ccoctl
) created to the correct directories for the installation program.
Prerequisites
You have configured an account with the cloud platform that hosts your cluster.
You have configured the Cloud Credential Operator utility (
ccoctl
).You have created the cloud provider resources that are required for your cluster with the
ccoctl
utility.
Procedure
If you did not set the
credentialsMode
parameter in theinstall-config.yaml
configuration file toManual
, modify the value as shown:Sample configuration file snippet
apiVersion: v1
baseDomain: example.com
credentialsMode: Manual
# ...
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests
Copy the manifests that the
ccoctl
utility generated to themanifests
directory that the installation program created by running the following command:$ cp /<path_to_ccoctl_output_dir>/manifests/* ./manifests/
Copy the private key that the
ccoctl
utility generated in thetls
directory to the installation directory by running the following command:$ cp -a /<path_to_ccoctl_output_dir>/tls .
Deploying the cluster
You can install OKD on a compatible cloud platform.
You can run the |
Prerequisites
You have configured an account with the cloud platform that hosts your cluster.
You have the OKD installation program and the pull secret for your cluster.
You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Procedure
Remove any existing GCP credentials that do not use the service account key for the GCP account that you configured for your cluster and that are stored in the following locations:
The
GOOGLE_CREDENTIALS
,GOOGLE_CLOUD_KEYFILE_JSON
, orGCLOUD_KEYFILE_JSON
environment variablesThe
~/.gcp/osServiceAccount.json
fileThe
gcloud cli
default credentials
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 For <installation_directory>
, specify the location of your customized./install-config.yaml
file.2 To view different installation details, specify warn
,debug
, orerror
instead ofinfo
.Optional: You can reduce the number of permissions for the service account that you used to install the cluster.
If you assigned the
Owner
role to your service account, you can remove that role and replace it with theViewer
role.If you included the
Service Account Key Admin
role, you can remove it.
Verification
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the
kubeadmin
user.Credential information also outputs to
<installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.
Prerequisites
You deployed an OKD cluster.
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 For <installation_directory>
, specify the path to the directory that you stored the installation files in.Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Additional resources
- See Accessing the web console for more details about accessing and understanding the OKD web console.
Additional resources
- See About remote health monitoring for more information about the Telemetry service
Next steps
If necessary, you can opt out of remote health reporting.