- Installing a cluster on Azure Stack Hub with network customizations
- Prerequisites
- Generating a key pair for cluster node SSH access
- Uploading the FCOS cluster image
- Obtaining the installation program
- Manually creating the installation configuration file
- Manually manage cloud credentials
- Configuring the cluster to use an internal CA
- Network configuration phases
- Specifying advanced network configuration
- Cluster Network Operator configuration
- Configuring hybrid networking with OVN-Kubernetes
- Deploying the cluster
- Installing the OpenShift CLI by downloading the binary
- Logging in to the cluster by using the CLI
- Logging in to the cluster by using the web console
- Next steps
Installing a cluster on Azure Stack Hub with network customizations
In OKD version 4.14, you can install a cluster with a customized network configuration on infrastructure that the installation program provisions on Azure Stack Hub. By customizing your network configuration, your cluster can coexist with existing IP address allocations in your environment and integrate with existing MTU and VXLAN configurations.
While you can select |
Prerequisites
You reviewed details about the OKD installation and update processes.
You read the documentation on selecting a cluster installation method and preparing it for users.
You configured an Azure Stack Hub account to host the cluster.
If you use a firewall, you configured it to allow the sites that your cluster requires access to.
You verified that you have approximately 16 GB of local disk space. Installing the cluster requires that you download the FCOS virtual hard disk (VHD) cluster image and upload it to your Azure Stack Hub environment so that it is accessible during deployment. Decompressing the VHD files requires this amount of local disk space.
Generating a key pair for cluster node SSH access
During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys
list for the core
user on each node, which enables password-less authentication.
After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core
. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.
If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather
command also requires the SSH public key to be in place on the cluster nodes.
Do not skip this procedure in production environments, where disaster recovery and debugging is required. |
You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs. |
On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the |
Procedure
If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:
$ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
1 Specify the path and file name, such as ~/.ssh/id_ed25519
, of the new SSH key. If you have an existing key pair, ensure your public key is in the your~/.ssh
directory.If you plan to install an OKD cluster that uses the Fedora cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the
x86_64
,ppc64le
, ands390x
architectures, do not create a key that uses theed25519
algorithm. Instead, create a key that uses thersa
orecdsa
algorithm.View the public SSH key:
$ cat <path>/<file_name>.pub
For example, run the following to view the
~/.ssh/id_ed25519.pub
public key:$ cat ~/.ssh/id_ed25519.pub
Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the
./openshift-install gather
command.On some distributions, default SSH private key identities such as
~/.ssh/id_rsa
and~/.ssh/id_dsa
are managed automatically.If the
ssh-agent
process is not already running for your local user, start it as a background task:$ eval "$(ssh-agent -s)"
Example output
Agent pid 31874
If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.
Add your SSH private key to the
ssh-agent
:$ ssh-add <path>/<file_name> (1)
1 Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519
Example output
Identity added: /home/<you>/<path>/<file_name> (<computer_name>)
Next steps
- When you install OKD, provide the SSH public key to the installation program.
Uploading the FCOS cluster image
You must download the FCOS virtual hard disk (VHD) cluster image and upload it to your Azure Stack Hub environment so that it is accessible during deployment.
Prerequisites
- Configure an Azure account.
Procedure
Obtain the FCOS VHD cluster image:
Export the URL of the FCOS VHD to an environment variable.
$ export COMPRESSED_VHD_URL=$(openshift-install coreos print-stream-json | jq -r '.architectures.x86_64.artifacts.azurestack.formats."vhd.gz".disk.location')
Download the compressed FCOS VHD file locally.
$ curl -O -L ${COMPRESSED_VHD_URL}
Decompress the VHD file.
The decompressed VHD file is approximately 16 GB, so be sure that your host system has 16 GB of free space available. The VHD file can be deleted once you have uploaded it.
Upload the local VHD to the Azure Stack Hub environment, making sure that the blob is publicly available. For example, you can upload the VHD to a blob using the
az
cli or the web portal.
Obtaining the installation program
Before you install OKD, download the installation file on the host you are using for installation.
Prerequisites
- You have a computer that runs Linux or macOS, with 500 MB of local disk space.
Procedure
Download installer from https://github.com/openshift/okd/releases
The installation program creates several files on the computer that you use to install your cluster. You must keep the installation program and the files that the installation program creates after you finish installing the cluster. Both files are required to delete the cluster.
Deleting the files created by the installation program does not remove your cluster, even if the cluster failed during installation. To remove your cluster, complete the OKD uninstallation procedures for your specific cloud provider.
Extract the installation program. For example, on a computer that uses a Linux operating system, run the following command:
$ tar -xvf openshift-install-linux.tar.gz
Download your installation pull secret from the Red Hat OpenShift Cluster Manager. This pull secret allows you to authenticate with the services that are provided by the included authorities, including Quay.io, which serves the container images for OKD components.
Using a pull secret from the Red Hat OpenShift Cluster Manager is not required. You can use a pull secret for another private registry. Or, if you do not need the cluster to pull images from a private registry, you can use
{"auths":{"fake":{"auth":"aWQ6cGFzcwo="}}}
as the pull secret when prompted during the installation.If you do not use the pull secret from the Red Hat OpenShift Cluster Manager:
Red Hat Operators are not available.
The Telemetry and Insights operators do not send data to Red Hat.
Content from the Red Hat Container Catalog registry, such as image streams and Operators, are not available.
Manually creating the installation configuration file
When installing OKD on Microsoft Azure Stack Hub, you must manually create your installation configuration file.
Prerequisites
You have an SSH public key on your local machine to provide to the installation program. The key will be used for SSH authentication onto your cluster nodes for debugging and disaster recovery.
You have obtained the OKD installation program and the pull secret for your cluster.
Procedure
Create an installation directory to store your required installation assets in:
$ mkdir <installation_directory>
You must create a directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.
Customize the sample
install-config.yaml
file template that is provided and save it in the<installation_directory>
.You must name this configuration file
install-config.yaml
.The
ImageContentSourcePolicy
file is generated as an output ofoc mirror
after the mirroring process is finished.The
oc mirror
command generates anImageContentSourcePolicy
file which contains the YAML needed to defineImageContentSourcePolicy
. Copy the text from this file and paste it into yourinstall-config.yaml
file.You must run the ‘oc mirror’ command twice. The first time you run the
oc mirror
command, you get a fullImageContentSourcePolicy
file. The second time you run theoc mirror
command, you only get the difference between the first and second run. Because of this behavior, you must always keep a backup of these files in case you need to merge them into one completeImageContentSourcePolicy
file. Keeping a backup of these two output files ensures that you have a completeImageContentSourcePolicy
file.
Make the following modifications:
Specify the required installation parameters.
Update the
platform.azure
section to specify the parameters that are specific to Azure Stack Hub.Optional: Update one or more of the default configuration parameters to customize the installation.
For more information about the parameters, see “Installation configuration parameters”.
Back up the
install-config.yaml
file so that you can use it to install multiple clusters.The
install-config.yaml
file is consumed during the next step of the installation process. You must back it up now.
Additional resources
Sample customized install-config.yaml file for Azure Stack Hub
You can customize the install-config.yaml
file to specify more details about your OKD cluster’s platform or modify the values of the required parameters.
This sample YAML file is provided for reference only. Use it as a resource to enter parameter values into the installation configuration file that you created manually. |
apiVersion: v1
baseDomain: example.com (1)
credentialsMode: Manual
controlPlane: (2) (3)
name: master
platform:
azure:
osDisk:
diskSizeGB: 1024 (4)
diskType: premium_LRS
replicas: 3
compute: (2)
- name: worker
platform:
azure:
osDisk:
diskSizeGB: 512 (4)
diskType: premium_LRS
replicas: 3
metadata:
name: test-cluster (1) (5)
networking:
clusterNetwork:
- cidr: 10.128.0.0/14
hostPrefix: 23
machineNetwork:
- cidr: 10.0.0.0/16
networkType: OVNKubernetes (6)
serviceNetwork:
- 172.30.0.0/16
platform:
azure:
armEndpoint: azurestack_arm_endpoint (1) (7)
baseDomainResourceGroupName: resource_group (1) (8)
region: azure_stack_local_region (1) (9)
resourceGroupName: existing_resource_group (10)
outboundType: Loadbalancer
cloudName: AzureStackCloud (1)
clusterOSimage: https://vhdsa.blob.example.example.com/vhd/rhcos-410.84.202112040202-0-azurestack.x86_64.vhd (1) (11)
pullSecret: '{"auths": ...}' (1) (12)
sshKey: ssh-ed25519 AAAA...(13)
additionalTrustBundle: | (14)
-----BEGIN CERTIFICATE-----
<MY_TRUSTED_CA_CERT>
-----END CERTIFICATE-----
1 | Required. | ||
2 | If you do not provide these parameters and values, the installation program provides the default value. | ||
3 | The controlPlane section is a single mapping, but the compute section is a sequence of mappings. To meet the requirements of the different data structures, the first line of the compute section must begin with a hyphen, - , and the first line of the controlPlane section must not. Although both sections currently define a single machine pool, it is possible that future versions of OKD will support defining multiple compute pools during installation. Only one control plane pool is used. | ||
4 | You can specify the size of the disk to use in GB. Minimum recommendation for control plane nodes is 1024 GB. | ||
5 | The name of the cluster. | ||
6 | The cluster network plugin to install. The supported values are OVNKubernetes and OpenShiftSDN . The default value is OVNKubernetes . | ||
7 | The Azure Resource Manager endpoint that your Azure Stack Hub operator provides. | ||
8 | The name of the resource group that contains the DNS zone for your base domain. | ||
9 | The name of your Azure Stack Hub local region. | ||
10 | The name of an existing resource group to install your cluster to. If undefined, a new resource group is created for the cluster. | ||
11 | The URL of a storage blob in the Azure Stack environment that contains an FCOS VHD. | ||
12 | The pull secret required to authenticate your cluster. | ||
13 | You can optionally provide the sshKey value that you use to access the machines in your cluster.
| ||
14 | If the Azure Stack Hub environment is using an internal Certificate Authority (CA), adding the CA certificate is required. |
Manually manage cloud credentials
The Cloud Credential Operator (CCO) only supports your cloud provider in manual mode. As a result, you must specify the identity and access management (IAM) secrets for your cloud provider.
Procedure
If you have not previously created installation manifest files, do so by running the following command:
$ openshift-install create manifests
Set a
$RELEASE_IMAGE
variable with the release image from your installation file by running the following command:$ RELEASE_IMAGE=$(./openshift-install version | awk '/release image/ {print $3}')
Extract the list of
CredentialsRequest
custom resources (CRs) from the OKD release image by running the following command:$ oc adm release extract \
--from=$RELEASE_IMAGE \
--credentials-requests \
--included \(1)
--install-config=<path_to_directory_with_installation_configuration>/install-config.yaml \(2)
--to=<path_to_directory_for_credentials_requests> (3)
1 The —included
parameter includes only the manifests that your specific cluster configuration requires.2 Specify the location of the install-config.yaml
file.3 Specify the path to the directory where you want to store the CredentialsRequest
objects. If the specified directory does not exist, this command creates it.This command creates a YAML file for each
CredentialsRequest
object.Sample
CredentialsRequest
objectapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AzureProviderSpec
roleBindings:
- role: Contributor
...
Create YAML files for secrets in the
openshift-install
manifests directory that you generated previously. The secrets must be stored using the namespace and secret name defined in thespec.secretRef
for eachCredentialsRequest
object.Sample
CredentialsRequest
object with secretsapiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <component_credentials_request>
namespace: openshift-cloud-credential-operator
...
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AzureProviderSpec
roleBindings:
- role: Contributor
...
secretRef:
name: <component_secret>
namespace: <component_namespace>
...
Sample
Secret
objectapiVersion: v1
kind: Secret
metadata:
name: <component_secret>
namespace: <component_namespace>
data:
azure_subscription_id: <base64_encoded_azure_subscription_id>
azure_client_id: <base64_encoded_azure_client_id>
azure_client_secret: <base64_encoded_azure_client_secret>
azure_tenant_id: <base64_encoded_azure_tenant_id>
azure_resource_prefix: <base64_encoded_azure_resource_prefix>
azure_resourcegroup: <base64_encoded_azure_resourcegroup>
azure_region: <base64_encoded_azure_region>
Before upgrading a cluster that uses manually maintained credentials, you must ensure that the CCO is in an upgradeable state. |
Additional resources
Configuring the cluster to use an internal CA
If the Azure Stack Hub environment is using an internal Certificate Authority (CA), update the cluster-proxy-01-config.yaml file
to configure the cluster to use the internal CA.
Prerequisites
Create the
install-config.yaml
file and specify the certificate trust bundle in.pem
format.Create the cluster manifests.
Procedure
From the directory in which the installation program creates files, go to the
manifests
directory.Add
user-ca-bundle
to thespec.trustedCA.name
field.Example
cluster-proxy-01-config.yaml
fileapiVersion: config.openshift.io/v1
kind: Proxy
metadata:
creationTimestamp: null
name: cluster
spec:
trustedCA:
name: user-ca-bundle
status: {}
Optional: Back up the
manifests/ cluster-proxy-01-config.yaml
file. The installation program consumes themanifests/
directory when you deploy the cluster.
Network configuration phases
There are two phases prior to OKD installation where you can customize the network configuration.
Phase 1
You can customize the following network-related fields in the install-config.yaml
file before you create the manifest files:
networking.networkType
networking.clusterNetwork
networking.serviceNetwork
networking.machineNetwork
For more information on these fields, refer to Installation configuration parameters.
Set the
networking.machineNetwork
to match the CIDR that the preferred NIC resides in.The CIDR range
172.17.0.0/16
is reserved by libVirt. You cannot use this range or any range that overlaps with this range for any networks in your cluster.
Phase 2
After creating the manifest files by running openshift-install create manifests
, you can define a customized Cluster Network Operator manifest with only the fields you want to modify. You can use the manifest to specify advanced network configuration.
You cannot override the values specified in phase 1 in the install-config.yaml
file during phase 2. However, you can further customize the network plugin during phase 2.
Specifying advanced network configuration
You can use advanced network configuration for your network plugin to integrate your cluster into your existing network environment. You can specify advanced network configuration only before you install the cluster.
Customizing your network configuration by modifying the OKD manifest files created by the installation program is not supported. Applying a manifest file that you create, as in the following procedure, is supported. |
Prerequisites
- You have created the
install-config.yaml
file and completed any modifications to it.
Procedure
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory> (1)
1 <installation_directory>
specifies the name of the directory that contains theinstall-config.yaml
file for your cluster.Create a stub manifest file for the advanced network configuration that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
Specify the advanced network configuration for your cluster in the
cluster-network-03-config.yml
file, such as in the following examples:Specify a different VXLAN port for the OpenShift SDN network provider
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
defaultNetwork:
openshiftSDNConfig:
vxlanPort: 4800
Enable IPsec for the OVN-Kubernetes network provider
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
defaultNetwork:
ovnKubernetesConfig:
ipsecConfig: {}
Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program consumes themanifests/
directory when you create the Ignition config files.
Cluster Network Operator configuration
The configuration for the cluster network is specified as part of the Cluster Network Operator (CNO) configuration and stored in a custom resource (CR) object that is named cluster
. The CR specifies the fields for the Network
API in the operator.openshift.io
API group.
The CNO configuration inherits the following fields during cluster installation from the Network
API in the Network.config.openshift.io
API group and these fields cannot be changed:
clusterNetwork
IP address pools from which pod IP addresses are allocated.
serviceNetwork
IP address pool for services.
defaultNetwork.type
Cluster network plugin, such as OpenShift SDN or OVN-Kubernetes.
You can specify the cluster network plugin configuration for your cluster by setting the fields for the defaultNetwork
object in the CNO object named cluster
.
Cluster Network Operator configuration object
The fields for the Cluster Network Operator (CNO) are described in the following table:
Field | Type | Description |
---|---|---|
|
| The name of the CNO object. This name is always |
|
| A list specifying the blocks of IP addresses from which pod IP addresses are allocated and the subnet prefix length assigned to each individual node in the cluster. For example:
You can customize this field only in the |
|
| A block of IP addresses for services. The OpenShift SDN and OVN-Kubernetes network plugins support only a single IP address block for the service network. For example:
You can customize this field only in the |
|
| Configures the network plugin for the cluster network. |
|
| The fields for this object specify the kube-proxy configuration. If you are using the OVN-Kubernetes cluster network plugin, the kube-proxy configuration has no effect. |
defaultNetwork object configuration
The values for the defaultNetwork
object are defined in the following table:
Field | Type | Description | ||
---|---|---|---|---|
|
| Either
| ||
|
| This object is only valid for the OpenShift SDN network plugin. | ||
|
| This object is only valid for the OVN-Kubernetes network plugin. |
Configuration for the OpenShift SDN network plugin
The following table describes the configuration fields for the OpenShift SDN network plugin:
Field | Type | Description |
---|---|---|
|
| Configures the network isolation mode for OpenShift SDN. The default value is The values |
|
| The maximum transmission unit (MTU) for the VXLAN overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes. If your cluster requires different MTU values for different nodes, you must set this value to This value cannot be changed after cluster installation. |
|
| The port to use for all VXLAN packets. The default value is If you are running in a virtualized environment with existing nodes that are part of another VXLAN network, then you might be required to change this. For example, when running an OpenShift SDN overlay on top of VMware NSX-T, you must select an alternate port for the VXLAN, because both SDNs use the same default VXLAN port number. On Amazon Web Services (AWS), you can select an alternate port for the VXLAN between port |
Example OpenShift SDN configuration
defaultNetwork:
type: OpenShiftSDN
openshiftSDNConfig:
mode: NetworkPolicy
mtu: 1450
vxlanPort: 4789
Configuration for the OVN-Kubernetes network plugin
The following table describes the configuration fields for the OVN-Kubernetes network plugin:
Field | Type | Description | ||
---|---|---|---|---|
|
| The maximum transmission unit (MTU) for the Geneve (Generic Network Virtualization Encapsulation) overlay network. This is detected automatically based on the MTU of the primary network interface. You do not normally need to override the detected MTU. If the auto-detected value is not what you expect it to be, confirm that the MTU on the primary network interface on your nodes is correct. You cannot use this option to change the MTU value of the primary network interface on the nodes. If your cluster requires different MTU values for different nodes, you must set this value to | ||
|
| The port to use for all Geneve packets. The default value is | ||
|
| Specify an empty object to enable IPsec encryption. | ||
|
| Specify a configuration object for customizing network policy audit logging. If unset, the defaults audit log settings are used. | ||
|
| Optional: Specify a configuration object for customizing how egress traffic is sent to the node gateway.
| ||
| If your existing network infrastructure overlaps with the This field cannot be changed after installation. | The default value is | ||
| If your existing network infrastructure overlaps with the This field cannot be changed after installation. | The default value is |
Field | Type | Description |
---|---|---|
| integer | The maximum number of messages to generate every second per node. The default value is |
| integer | The maximum size for the audit log in bytes. The default value is |
| string | One of the following additional audit log targets:
|
| string | The syslog facility, such as |
Field | Type | Description |
---|---|---|
|
| Set this field to This field has an interaction with the Open vSwitch hardware offloading feature. If you set this field to |
|
| You can control IP forwarding for all traffic on OVN-Kubernetes managed interfaces by using the |
Example OVN-Kubernetes configuration with IPSec enabled
defaultNetwork:
type: OVNKubernetes
ovnKubernetesConfig:
mtu: 1400
genevePort: 6081
ipsecConfig: {}
kubeProxyConfig object configuration
The values for the kubeProxyConfig
object are defined in the following table:
Field | Type | Description | ||
---|---|---|---|---|
|
| The refresh period for
| ||
|
| The minimum duration before refreshing
|
Configuring hybrid networking with OVN-Kubernetes
You can configure your cluster to use hybrid networking with the OVN-Kubernetes network plugin. This allows a hybrid cluster that supports different node networking configurations.
This configuration is necessary to run both Linux and Windows nodes in the same cluster. |
Prerequisites
- You defined
OVNKubernetes
for thenetworking.networkType
parameter in theinstall-config.yaml
file. See the installation documentation for configuring OKD network customizations on your chosen cloud provider for more information.
Procedure
Change to the directory that contains the installation program and create the manifests:
$ ./openshift-install create manifests --dir <installation_directory>
where:
<installation_directory>
Specifies the name of the directory that contains the
install-config.yaml
file for your cluster.Create a stub manifest file for the advanced network configuration that is named
cluster-network-03-config.yml
in the<installation_directory>/manifests/
directory:$ cat <<EOF > <installation_directory>/manifests/cluster-network-03-config.yml
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
EOF
where:
<installation_directory>
Specifies the directory name that contains the
manifests/
directory for your cluster.Open the
cluster-network-03-config.yml
file in an editor and configure OVN-Kubernetes with hybrid networking, such as in the following example:Specify a hybrid networking configuration
apiVersion: operator.openshift.io/v1
kind: Network
metadata:
name: cluster
spec:
defaultNetwork:
ovnKubernetesConfig:
hybridOverlayConfig:
hybridClusterNetwork: (1)
- cidr: 10.132.0.0/14
hostPrefix: 23
hybridOverlayVXLANPort: 9898 (2)
1 Specify the CIDR configuration used for nodes on the additional overlay network. The hybridClusterNetwork
CIDR cannot overlap with theclusterNetwork
CIDR.2 Specify a custom VXLAN port for the additional overlay network. This is required for running Windows nodes in a cluster installed on vSphere, and must not be configured for any other cloud provider. The custom port can be any open port excluding the default 4789
port. For more information on this requirement, see the Microsoft documentation on Pod-to-pod connectivity between hosts is broken.Windows Server Long-Term Servicing Channel (LTSC): Windows Server 2019 is not supported on clusters with a custom
hybridOverlayVXLANPort
value because this Windows server version does not support selecting a custom VXLAN port.Save the
cluster-network-03-config.yml
file and quit the text editor.Optional: Back up the
manifests/cluster-network-03-config.yml
file. The installation program deletes themanifests/
directory when creating the cluster.
For more information on using Linux and Windows nodes in the same cluster, see Understanding Windows container workloads. |
Deploying the cluster
You can install OKD on a compatible cloud platform.
You can run the |
Prerequisites
You have configured an account with the cloud platform that hosts your cluster.
You have the OKD installation program and the pull secret for your cluster.
You have verified that the cloud provider account on your host has the correct permissions to deploy the cluster. An account with incorrect permissions causes the installation process to fail with an error message that displays the missing permissions.
Procedure
Change to the directory that contains the installation program and initialize the cluster deployment:
$ ./openshift-install create cluster --dir <installation_directory> \ (1)
--log-level=info (2)
1 For <installation_directory>
, specify the location of your customized./install-config.yaml
file.2 To view different installation details, specify warn
,debug
, orerror
instead ofinfo
.
Verification
When the cluster deployment completes successfully:
The terminal displays directions for accessing your cluster, including a link to the web console and credentials for the
kubeadmin
user.Credential information also outputs to
<installation_directory>/.openshift_install.log
.
Do not delete the installation program or the files that the installation program creates. Both are required to delete the cluster. |
Example output
...
INFO Install complete!
INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
INFO Login to the console with user: "kubeadmin", and password: "password"
INFO Time elapsed: 36m22s
|
Installing the OpenShift CLI by downloading the binary
You can install the OpenShift CLI (oc
) to interact with OKD from a command-line interface. You can install oc
on Linux, Windows, or macOS.
If you installed an earlier version of |
Installing the OpenShift CLI on Linux
You can install the OpenShift CLI (oc
) binary on Linux by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack the archive:
$ tar xvf <file>
Place the
oc
binary in a directory that is on yourPATH
.To check your
PATH
, execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
Installing the OpenShift CLI on Windows
You can install the OpenShift CLI (oc
) binary on Windows by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.zip
.Unzip the archive with a ZIP program.
Move the
oc
binary to a directory that is on yourPATH
.To check your
PATH
, open the command prompt and execute the following command:C:\> path
After you install the OpenShift CLI, it is available using the oc
command:
C:\> oc <command>
Installing the OpenShift CLI on macOS
You can install the OpenShift CLI (oc
) binary on macOS by using the following procedure.
Procedure
Navigate to https://mirror.openshift.com/pub/openshift-v4/clients/oc/latest/ and choose the folder for your operating system and architecture.
Download
oc.tar.gz
.Unpack and unzip the archive.
Move the
oc
binary to a directory on your PATH.To check your
PATH
, open a terminal and execute the following command:$ echo $PATH
After you install the OpenShift CLI, it is available using the oc
command:
$ oc <command>
Logging in to the cluster by using the CLI
You can log in to your cluster as a default system user by exporting the cluster kubeconfig
file. The kubeconfig
file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.
Prerequisites
You deployed an OKD cluster.
You installed the
oc
CLI.
Procedure
Export the
kubeadmin
credentials:$ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
1 For <installation_directory>
, specify the path to the directory that you stored the installation files in.Verify you can run
oc
commands successfully using the exported configuration:$ oc whoami
Example output
system:admin
Logging in to the cluster by using the web console
The kubeadmin
user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin
user by using the OKD web console.
Prerequisites
You have access to the installation host.
You completed a cluster installation and all cluster Operators are available.
Procedure
Obtain the password for the
kubeadmin
user from thekubeadmin-password
file on the installation host:$ cat <installation_directory>/auth/kubeadmin-password
Alternatively, you can obtain the
kubeadmin
password from the<installation_directory>/.openshift_install.log
log file on the installation host.List the OKD web console route:
$ oc get routes -n openshift-console | grep 'console-openshift'
Alternatively, you can obtain the OKD route from the
<installation_directory>/.openshift_install.log
log file on the installation host.Example output
console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
Navigate to the route detailed in the output of the preceding command in a web browser and log in as the
kubeadmin
user.
Additional resources
Additional resources
Next steps
If necessary, you can opt out of remote health reporting.
If necessary, you can remove cloud provider credentials.