Installing a cluster on AWS in a restricted network with user-provisioned infrastructure

In OKD version 4.14, you can install a cluster on Amazon Web Services (AWS) using infrastructure that you provide and an internal mirror of the installation release content.

While you can install an OKD cluster by using mirrored installation release content, your cluster still requires internet access to use the AWS APIs.

One way to create this infrastructure is to use the provided CloudFormation templates. You can modify the templates to customize your infrastructure or use the information that they contain to create AWS objects according to your company’s policies.

The steps for performing a user-provisioned infrastructure installation are provided as an example only. Installing a cluster with infrastructure you provide requires knowledge of the cloud provider and the installation process of OKD. Several CloudFormation templates are provided to assist in completing these steps or to help model your own. You are also free to create the required resources through other methods; the templates are just an example.

Prerequisites

About installations in restricted networks

In OKD 4.14, you can perform an installation that does not require an active connection to the internet to obtain software components. Restricted network installations can be completed using installer-provisioned infrastructure or user-provisioned infrastructure, depending on the cloud platform to which you are installing the cluster.

If you choose to perform a restricted network installation on a cloud platform, you still require access to its cloud APIs. Some cloud functions, like Amazon Web Service’s Route 53 DNS and IAM services, require internet access. Depending on your network, you might require less internet access for an installation on bare metal hardware, Nutanix, or on VMware vSphere.

To complete a restricted network installation, you must create a registry that mirrors the contents of the OpenShift image registry and contains the installation media. You can create this registry on a mirror host, which can access both the internet and your closed network, or by using other methods that meet your restrictions.

Because of the complexity of the configuration for user-provisioned installations, consider completing a standard user-provisioned infrastructure installation before you attempt a restricted network installation using user-provisioned infrastructure. Completing this test installation might make it easier to isolate and troubleshoot any issues that might arise during your installation in a restricted network.

Additional limits

Clusters in restricted networks have the following additional limitations and restrictions:

  • The ClusterVersion status includes an Unable to retrieve available updates error.

  • By default, you cannot use the contents of the Developer Catalog because you cannot access the required image stream tags.

Requirements for a cluster with user-provisioned infrastructure

For a cluster that contains user-provisioned infrastructure, you must deploy all of the required machines.

This section describes the requirements for deploying OKD on user-provisioned infrastructure.

Required machines for cluster installation

The smallest OKD clusters require the following hosts:

Table 1. Minimum required hosts
HostsDescription

One temporary bootstrap machine

The cluster requires the bootstrap machine to deploy the OKD cluster on the three control plane machines. You can remove the bootstrap machine after you install the cluster.

Three control plane machines

The control plane machines run the Kubernetes and OKD services that form the control plane.

At least two compute machines, which are also known as worker machines.

The workloads requested by OKD users run on the compute machines.

To maintain high availability of your cluster, use separate physical hosts for these cluster machines.

The bootstrap and control plane machines must use Fedora CoreOS (FCOS) as the operating system. However, the compute machines can choose between Fedora CoreOS (FCOS), Fedora 8.6, Fedora 8.7, or Fedora 8.8.

See Red Hat Enterprise Linux technology capabilities and limits.

Minimum resource requirements for cluster installation

Each cluster machine must meet the following minimum requirements:

Table 2. Minimum resource requirements
MachineOperating SystemvCPU [1]Virtual RAMStorageInput/Output Per Second (IOPS)[2]

Bootstrap

FCOS

4

16 GB

100 GB

300

Control plane

FCOS

4

16 GB

100 GB

300

Compute

FCOS

2

8 GB

100 GB

300

  1. One vCPU is equivalent to one physical core when simultaneous multithreading (SMT), or hyperthreading, is not enabled. When enabled, use the following formula to calculate the corresponding ratio: (threads per core × cores) × sockets = vCPUs.

  2. OKD and Kubernetes are sensitive to disk performance, and faster storage is recommended, particularly for etcd on the control plane nodes which require a 10 ms p99 fsync duration. Note that on many cloud platforms, storage size and IOPS scale together, so you might need to over-allocate storage volume to obtain sufficient performance.

  3. As with all user-provisioned installations, if you choose to use Fedora compute machines in your cluster, you take responsibility for all operating system life cycle management and maintenance, including performing system updates, applying patches, and completing all other required tasks. Use of Fedora 7 compute machines is deprecated and has been removed in OKD 4.10 and later.

If an instance type for your platform meets the minimum requirements for cluster machines, it is supported to use in OKD.

Additional resources

Tested instance types for AWS

The following Amazon Web Services (AWS) instance types have been tested with OKD.

Use the machine types included in the following charts for your AWS instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in “Minimum resource requirements for cluster installation”.

Machine types based on 64-bit x86 architecture

  • c4.*

  • c5.*

  • c5a.*

  • i3.*

  • m4.*

  • m5.*

  • m5a.*

  • m6i.*

  • r4.*

  • r5.*

  • r5a.*

  • r6i.*

  • t3.*

  • t3a.*

Tested instance types for AWS on 64-bit ARM infrastructures

The following Amazon Web Services (AWS) 64-bit ARM instance types have been tested with OKD.

Use the machine types included in the following charts for your AWS ARM instances. If you use an instance type that is not listed in the chart, ensure that the instance size you use matches the minimum resource requirements that are listed in “Minimum resource requirements for cluster installation”.

Machine types based on 64-bit ARM architecture

  • c6g.*

  • m6g.*

Certificate signing requests management

Because your cluster has limited access to automatic machine management when you use infrastructure that you provision, you must provide a mechanism for approving cluster certificate signing requests (CSRs) after installation. The kube-controller-manager only approves the kubelet client CSRs. The machine-approver cannot guarantee the validity of a serving certificate that is requested by using kubelet credentials because it cannot confirm that the correct machine issued the request. You must determine and implement a method of verifying the validity of the kubelet serving certificate requests and approving them.

Required AWS infrastructure components

To install OKD on user-provisioned infrastructure in Amazon Web Services (AWS), you must manually create both the machines and their supporting infrastructure.

For more information about the integration testing for different platforms, see the OpenShift Container Platform 4.x Tested Integrations page.

By using the provided CloudFormation templates, you can create stacks of AWS resources that represent the following components:

  • An AWS Virtual Private Cloud (VPC)

  • Networking and load balancing components

  • Security groups and roles

  • An OKD bootstrap node

  • OKD control plane nodes

  • An OKD compute node

Alternatively, you can manually create the components or you can reuse existing infrastructure that meets the cluster requirements. Review the CloudFormation templates for more details about how the components interrelate.

Other infrastructure components

  • A VPC

  • DNS entries

  • Load balancers (classic or network) and listeners

  • A public and a private Route 53 zone

  • Security groups

  • IAM roles

  • S3 buckets

If you are working in a disconnected environment, you are unable to reach the public IP addresses for EC2, ELB, and S3 endpoints. Depending on the level to which you want to restrict internet traffic during the installation, the following configuration options are available:

Option 1: Create VPC endpoints

Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:

  • ec2.<aws_region>.amazonaws.com

  • elasticloadbalancing.<aws_region>.amazonaws.com

  • s3.<aws_region>.amazonaws.com

With this option, network traffic remains private between your VPC and the required AWS services.

Option 2: Create a proxy without VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy. With this option, internet traffic goes through the proxy to reach the required AWS services.

Option 3: Create a proxy with VPC endpoints

As part of the installation process, you can configure an HTTP or HTTPS proxy with VPC endpoints. Create a VPC endpoint and attach it to the subnets that the clusters are using. Name the endpoints as follows:

  • ec2.<aws_region>.amazonaws.com

  • elasticloadbalancing.<aws_region>.amazonaws.com

  • s3.<aws_region>.amazonaws.com

When configuring the proxy in the install-config.yaml file, add these endpoints to the noProxy field. With this option, the proxy prevents the cluster from accessing the internet directly. However, network traffic remains private between your VPC and the required AWS services.

Required VPC components

You must provide a suitable VPC and subnets that allow communication to your machines.

ComponentAWS typeDescription

VPC

  • AWS::EC2::VPC

  • AWS::EC2::VPCEndpoint

You must provide a public VPC for the cluster to use. The VPC uses an endpoint that references the route tables for each subnet to improve communication with the registry that is hosted in S3.

Public subnets

  • AWS::EC2::Subnet

  • AWS::EC2::SubnetNetworkAclAssociation

Your VPC must have public subnets for between 1 and 3 availability zones and associate them with appropriate Ingress rules.

Internet gateway

  • AWS::EC2::InternetGateway

  • AWS::EC2::VPCGatewayAttachment

  • AWS::EC2::RouteTable

  • AWS::EC2::Route

  • AWS::EC2::SubnetRouteTableAssociation

  • AWS::EC2::NatGateway

  • AWS::EC2::EIP

You must have a public internet gateway, with public routes, attached to the VPC. In the provided templates, each public subnet has a NAT gateway with an EIP address. These NAT gateways allow cluster resources, like private subnet instances, to reach the internet and are not required for some restricted network or proxy scenarios.

Network access control

  • AWS::EC2::NetworkAcl

  • AWS::EC2::NetworkAclEntry

You must allow the VPC to access the following ports:

Port

Reason

80

Inbound HTTP traffic

443

Inbound HTTPS traffic

22

Inbound SSH traffic

1024 - 65535

Inbound ephemeral traffic

0 - 65535

Outbound ephemeral traffic

Private subnets

  • AWS::EC2::Subnet

  • AWS::EC2::RouteTable

  • AWS::EC2::SubnetRouteTableAssociation

Your VPC can have private subnets. The provided CloudFormation templates can create private subnets for between 1 and 3 availability zones. If you use private subnets, you must provide appropriate routes and tables for them.

Required DNS and load balancing components

Your DNS and load balancer configuration needs to use a public hosted zone and can use a private hosted zone similar to the one that the installation program uses if it provisions the cluster’s infrastructure. You must create a DNS entry that resolves to your load balancer. An entry for api.<cluster_name>.<domain> must point to the external load balancer, and an entry for api-int.<cluster_name>.<domain> must point to the internal load balancer.

The cluster also requires load balancers and listeners for port 6443, which are required for the Kubernetes API and its extensions, and port 22623, which are required for the Ignition config files for new machines. The targets will be the control plane nodes. Port 6443 must be accessible to both clients external to the cluster and nodes within the cluster. Port 22623 must be accessible to nodes within the cluster.

ComponentAWS typeDescription

DNS

AWS::Route53::HostedZone

The hosted zone for your internal DNS.

Public load balancer

AWS::ElasticLoadBalancingV2::LoadBalancer

The load balancer for your public subnets.

External API server record

AWS::Route53::RecordSetGroup

Alias records for the external API server.

External listener

AWS::ElasticLoadBalancingV2::Listener

A listener on port 6443 for the external load balancer.

External target group

AWS::ElasticLoadBalancingV2::TargetGroup

The target group for the external load balancer.

Private load balancer

AWS::ElasticLoadBalancingV2::LoadBalancer

The load balancer for your private subnets.

Internal API server record

AWS::Route53::RecordSetGroup

Alias records for the internal API server.

Internal listener

AWS::ElasticLoadBalancingV2::Listener

A listener on port 22623 for the internal load balancer.

Internal target group

AWS::ElasticLoadBalancingV2::TargetGroup

The target group for the internal load balancer.

Internal listener

AWS::ElasticLoadBalancingV2::Listener

A listener on port 6443 for the internal load balancer.

Internal target group

AWS::ElasticLoadBalancingV2::TargetGroup

The target group for the internal load balancer.

Security groups

The control plane and worker machines require access to the following ports:

GroupTypeIP ProtocolPort range

MasterSecurityGroup

AWS::EC2::SecurityGroup

icmp

0

tcp

22

tcp

6443

tcp

22623

WorkerSecurityGroup

AWS::EC2::SecurityGroup

icmp

0

tcp

22

BootstrapSecurityGroup

AWS::EC2::SecurityGroup

tcp

22

tcp

19531

Control plane Ingress

The control plane machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.

Ingress groupDescriptionIP protocolPort range

MasterIngressEtcd

etcd

tcp

2379- 2380

MasterIngressVxlan

Vxlan packets

udp

4789

MasterIngressWorkerVxlan

Vxlan packets

udp

4789

MasterIngressInternal

Internal cluster communication and Kubernetes proxy metrics

tcp

9000 - 9999

MasterIngressWorkerInternal

Internal cluster communication

tcp

9000 - 9999

MasterIngressKube

Kubernetes kubelet, scheduler and controller manager

tcp

10250 - 10259

MasterIngressWorkerKube

Kubernetes kubelet, scheduler and controller manager

tcp

10250 - 10259

MasterIngressIngressServices

Kubernetes Ingress services

tcp

30000 - 32767

MasterIngressWorkerIngressServices

Kubernetes Ingress services

tcp

30000 - 32767

MasterIngressGeneve

Geneve packets

udp

6081

MasterIngressWorkerGeneve

Geneve packets

udp

6081

MasterIngressIpsecIke

IPsec IKE packets

udp

500

MasterIngressWorkerIpsecIke

IPsec IKE packets

udp

500

MasterIngressIpsecNat

IPsec NAT-T packets

udp

4500

MasterIngressWorkerIpsecNat

IPsec NAT-T packets

udp

4500

MasterIngressIpsecEsp

IPsec ESP packets

50

All

MasterIngressWorkerIpsecEsp

IPsec ESP packets

50

All

MasterIngressInternalUDP

Internal cluster communication

udp

9000 - 9999

MasterIngressWorkerInternalUDP

Internal cluster communication

udp

9000 - 9999

MasterIngressIngressServicesUDP

Kubernetes Ingress services

udp

30000 - 32767

MasterIngressWorkerIngressServicesUDP

Kubernetes Ingress services

udp

30000 - 32767

Worker Ingress

The worker machines require the following Ingress groups. Each Ingress group is a AWS::EC2::SecurityGroupIngress resource.

Ingress groupDescriptionIP protocolPort range

WorkerIngressVxlan

Vxlan packets

udp

4789

WorkerIngressWorkerVxlan

Vxlan packets

udp

4789

WorkerIngressInternal

Internal cluster communication

tcp

9000 - 9999

WorkerIngressWorkerInternal

Internal cluster communication

tcp

9000 - 9999

WorkerIngressKube

Kubernetes kubelet, scheduler, and controller manager

tcp

10250

WorkerIngressWorkerKube

Kubernetes kubelet, scheduler, and controller manager

tcp

10250

WorkerIngressIngressServices

Kubernetes Ingress services

tcp

30000 - 32767

WorkerIngressWorkerIngressServices

Kubernetes Ingress services

tcp

30000 - 32767

WorkerIngressGeneve

Geneve packets

udp

6081

WorkerIngressMasterGeneve

Geneve packets

udp

6081

WorkerIngressIpsecIke

IPsec IKE packets

udp

500

WorkerIngressMasterIpsecIke

IPsec IKE packets

udp

500

WorkerIngressIpsecNat

IPsec NAT-T packets

udp

4500

WorkerIngressMasterIpsecNat

IPsec NAT-T packets

udp

4500

WorkerIngressIpsecEsp

IPsec ESP packets

50

All

WorkerIngressMasterIpsecEsp

IPsec ESP packets

50

All

WorkerIngressInternalUDP

Internal cluster communication

udp

9000 - 9999

WorkerIngressMasterInternalUDP

Internal cluster communication

udp

9000 - 9999

WorkerIngressIngressServicesUDP

Kubernetes Ingress services

udp

30000 - 32767

WorkerIngressMasterIngressServicesUDP

Kubernetes Ingress services

udp

30000 - 32767

Roles and instance profiles

You must grant the machines permissions in AWS. The provided CloudFormation templates grant the machines Allow permissions for the following AWS::IAM::Role objects and provide a AWS::IAM::InstanceProfile for each set of roles. If you do not use the templates, you can grant the machines the following broad permissions or the following individual permissions.

RoleEffectActionResource

Master

Allow

ec2:

Allow

elasticloadbalancing:

Allow

iam:PassRole

Allow

s3:GetObject

Worker

Allow

ec2:Describe

Bootstrap

Allow

ec2:Describe

Allow

ec2:AttachVolume

Allow

ec2:DetachVolume

Cluster machines

You need AWS::EC2::Instance objects for the following machines:

  • A bootstrap machine. This machine is required during installation, but you can remove it after your cluster deploys.

  • Three control plane machines. The control plane machines are not governed by a control plane machine set.

  • Compute machines. You must create at least two compute machines, which are also known as worker machines, during installation. These machines are not governed by a compute machine set.

Required AWS permissions for the IAM user

Your IAM user must have the permission tag:GetResources in the region us-east-1 to delete the base cluster resources. As part of the AWS API requirement, the OKD installation program performs various actions in this region.

When you attach the AdministratorAccess policy to the IAM user that you create in Amazon Web Services (AWS), you grant that user all of the required permissions. To deploy all components of an OKD cluster, the IAM user requires the following permissions:

Required EC2 permissions for installation

  • ec2:AuthorizeSecurityGroupEgress

  • ec2:AuthorizeSecurityGroupIngress

  • ec2:CopyImage

  • ec2:CreateNetworkInterface

  • ec2:AttachNetworkInterface

  • ec2:CreateSecurityGroup

  • ec2:CreateTags

  • ec2:CreateVolume

  • ec2:DeleteSecurityGroup

  • ec2:DeleteSnapshot

  • ec2:DeleteTags

  • ec2:DeregisterImage

  • ec2:DescribeAccountAttributes

  • ec2:DescribeAddresses

  • ec2:DescribeAvailabilityZones

  • ec2:DescribeDhcpOptions

  • ec2:DescribeImages

  • ec2:DescribeInstanceAttribute

  • ec2:DescribeInstanceCreditSpecifications

  • ec2:DescribeInstances

  • ec2:DescribeInstanceTypes

  • ec2:DescribeInternetGateways

  • ec2:DescribeKeyPairs

  • ec2:DescribeNatGateways

  • ec2:DescribeNetworkAcls

  • ec2:DescribeNetworkInterfaces

  • ec2:DescribePrefixLists

  • ec2:DescribeRegions

  • ec2:DescribeRouteTables

  • ec2:DescribeSecurityGroups

  • ec2:DescribeSubnets

  • ec2:DescribeTags

  • ec2:DescribeVolumes

  • ec2:DescribeVpcAttribute

  • ec2:DescribeVpcClassicLink

  • ec2:DescribeVpcClassicLinkDnsSupport

  • ec2:DescribeVpcEndpoints

  • ec2:DescribeVpcs

  • ec2:GetEbsDefaultKmsKeyId

  • ec2:ModifyInstanceAttribute

  • ec2:ModifyNetworkInterfaceAttribute

  • ec2:RevokeSecurityGroupEgress

  • ec2:RevokeSecurityGroupIngress

  • ec2:RunInstances

  • ec2:TerminateInstances

Required permissions for creating network resources during installation

  • ec2:AllocateAddress

  • ec2:AssociateAddress

  • ec2:AssociateDhcpOptions

  • ec2:AssociateRouteTable

  • ec2:AttachInternetGateway

  • ec2:CreateDhcpOptions

  • ec2:CreateInternetGateway

  • ec2:CreateNatGateway

  • ec2:CreateRoute

  • ec2:CreateRouteTable

  • ec2:CreateSubnet

  • ec2:CreateVpc

  • ec2:CreateVpcEndpoint

  • ec2:ModifySubnetAttribute

  • ec2:ModifyVpcAttribute

If you use an existing VPC, your account does not require these permissions for creating network resources.

Required Elastic Load Balancing permissions (ELB) for installation

  • elasticloadbalancing:AddTags

  • elasticloadbalancing:ApplySecurityGroupsToLoadBalancer

  • elasticloadbalancing:AttachLoadBalancerToSubnets

  • elasticloadbalancing:ConfigureHealthCheck

  • elasticloadbalancing:CreateLoadBalancer

  • elasticloadbalancing:CreateLoadBalancerListeners

  • elasticloadbalancing:DeleteLoadBalancer

  • elasticloadbalancing:DeregisterInstancesFromLoadBalancer

  • elasticloadbalancing:DescribeInstanceHealth

  • elasticloadbalancing:DescribeLoadBalancerAttributes

  • elasticloadbalancing:DescribeLoadBalancers

  • elasticloadbalancing:DescribeTags

  • elasticloadbalancing:ModifyLoadBalancerAttributes

  • elasticloadbalancing:RegisterInstancesWithLoadBalancer

  • elasticloadbalancing:SetLoadBalancerPoliciesOfListener

Required Elastic Load Balancing permissions (ELBv2) for installation

  • elasticloadbalancing:AddTags

  • elasticloadbalancing:CreateListener

  • elasticloadbalancing:CreateLoadBalancer

  • elasticloadbalancing:CreateTargetGroup

  • elasticloadbalancing:DeleteLoadBalancer

  • elasticloadbalancing:DeregisterTargets

  • elasticloadbalancing:DescribeListeners

  • elasticloadbalancing:DescribeLoadBalancerAttributes

  • elasticloadbalancing:DescribeLoadBalancers

  • elasticloadbalancing:DescribeTargetGroupAttributes

  • elasticloadbalancing:DescribeTargetHealth

  • elasticloadbalancing:ModifyLoadBalancerAttributes

  • elasticloadbalancing:ModifyTargetGroup

  • elasticloadbalancing:ModifyTargetGroupAttributes

  • elasticloadbalancing:RegisterTargets

Required IAM permissions for installation

  • iam:AddRoleToInstanceProfile

  • iam:CreateInstanceProfile

  • iam:CreateRole

  • iam:DeleteInstanceProfile

  • iam:DeleteRole

  • iam:DeleteRolePolicy

  • iam:GetInstanceProfile

  • iam:GetRole

  • iam:GetRolePolicy

  • iam:GetUser

  • iam:ListInstanceProfilesForRole

  • iam:ListRoles

  • iam:ListUsers

  • iam:PassRole

  • iam:PutRolePolicy

  • iam:RemoveRoleFromInstanceProfile

  • iam:SimulatePrincipalPolicy

  • iam:TagRole

If you have not created a load balancer in your AWS account, the IAM user also requires the iam:CreateServiceLinkedRole permission.

Required Route 53 permissions for installation

  • route53:ChangeResourceRecordSets

  • route53:ChangeTagsForResource

  • route53:CreateHostedZone

  • route53:DeleteHostedZone

  • route53:GetChange

  • route53:GetHostedZone

  • route53:ListHostedZones

  • route53:ListHostedZonesByName

  • route53:ListResourceRecordSets

  • route53:ListTagsForResource

  • route53:UpdateHostedZoneComment

Required S3 permissions for installation

  • s3:CreateBucket

  • s3:DeleteBucket

  • s3:GetAccelerateConfiguration

  • s3:GetBucketAcl

  • s3:GetBucketCors

  • s3:GetBucketLocation

  • s3:GetBucketLogging

  • s3:GetBucketPolicy

  • s3:GetBucketObjectLockConfiguration

  • s3:GetBucketReplication

  • s3:GetBucketRequestPayment

  • s3:GetBucketTagging

  • s3:GetBucketVersioning

  • s3:GetBucketWebsite

  • s3:GetEncryptionConfiguration

  • s3:GetLifecycleConfiguration

  • s3:GetReplicationConfiguration

  • s3:ListBucket

  • s3:PutBucketAcl

  • s3:PutBucketTagging

  • s3:PutEncryptionConfiguration

S3 permissions that cluster Operators require

  • s3:DeleteObject

  • s3:GetObject

  • s3:GetObjectAcl

  • s3:GetObjectTagging

  • s3:GetObjectVersion

  • s3:PutObject

  • s3:PutObjectAcl

  • s3:PutObjectTagging

Required permissions to delete base cluster resources

  • autoscaling:DescribeAutoScalingGroups

  • ec2:DeletePlacementGroup

  • ec2:DeleteNetworkInterface

  • ec2:DeleteVolume

  • elasticloadbalancing:DeleteTargetGroup

  • elasticloadbalancing:DescribeTargetGroups

  • iam:DeleteAccessKey

  • iam:DeleteUser

  • iam:ListAttachedRolePolicies

  • iam:ListInstanceProfiles

  • iam:ListRolePolicies

  • iam:ListUserPolicies

  • s3:DeleteObject

  • s3:ListBucketVersions

  • tag:GetResources

Required permissions to delete network resources

  • ec2:DeleteDhcpOptions

  • ec2:DeleteInternetGateway

  • ec2:DeleteNatGateway

  • ec2:DeleteRoute

  • ec2:DeleteRouteTable

  • ec2:DeleteSubnet

  • ec2:DeleteVpc

  • ec2:DeleteVpcEndpoints

  • ec2:DetachInternetGateway

  • ec2:DisassociateRouteTable

  • ec2:ReleaseAddress

  • ec2:ReplaceRouteTableAssociation

If you use an existing VPC, your account does not require these permissions to delete network resources. Instead, your account only requires the tag:UntagResources permission to delete network resources.

Required permissions to delete a cluster with shared instance roles

  • iam:UntagRole

Additional IAM and S3 permissions that are required to create manifests

  • iam:DeleteAccessKey

  • iam:DeleteUser

  • iam:DeleteUserPolicy

  • iam:GetUserPolicy

  • iam:ListAccessKeys

  • iam:PutUserPolicy

  • iam:TagUser

  • s3:PutBucketPublicAccessBlock

  • s3:GetBucketPublicAccessBlock

  • s3:PutLifecycleConfiguration

  • s3:HeadBucket

  • s3:ListBucketMultipartUploads

  • s3:AbortMultipartUpload

If you are managing your cloud provider credentials with mint mode, the IAM user also requires the iam:CreateAccessKey and iam:CreateUser permissions.

Optional permissions for instance and quota checks for installation

  • ec2:DescribeInstanceTypeOfferings

  • servicequotas:ListAWSDefaultServiceQuotas

Optional permissions for the cluster owner account when installing a cluster on a shared VPC

  • sts:AssumeRole

Generating a key pair for cluster node SSH access

During an OKD installation, you can provide an SSH public key to the installation program. The key is passed to the Fedora CoreOS (FCOS) nodes through their Ignition config files and is used to authenticate SSH access to the nodes. The key is added to the ~/.ssh/authorized_keys list for the core user on each node, which enables password-less authentication.

After the key is passed to the nodes, you can use the key pair to SSH in to the FCOS nodes as the user core. To access the nodes through SSH, the private key identity must be managed by SSH for your local user.

If you want to SSH in to your cluster nodes to perform installation debugging or disaster recovery, you must provide the SSH public key during the installation process. The ./openshift-install gather command also requires the SSH public key to be in place on the cluster nodes.

Do not skip this procedure in production environments, where disaster recovery and debugging is required.

You must use a local key, not one that you configured with platform-specific approaches such as AWS key pairs.

On clusters running Fedora CoreOS (FCOS), the SSH keys specified in the Ignition config files are written to the /home/core/.ssh/authorized_keys.d/core file. However, the Machine Config Operator manages SSH keys in the /home/core/.ssh/authorized_keys file and configures sshd to ignore the /home/core/.ssh/authorized_keys.d/core file. As a result, newly provisioned OKD nodes are not accessible using SSH until the Machine Config Operator reconciles the machine configs with the authorized_keys file. After you can access the nodes using SSH, you can delete the /home/core/.ssh/authorized_keys.d/core file.

Procedure

  1. If you do not have an existing SSH key pair on your local machine to use for authentication onto your cluster nodes, create one. For example, on a computer that uses a Linux operating system, run the following command:

    1. $ ssh-keygen -t ed25519 -N '' -f <path>/<file_name> (1)
    1Specify the path and file name, such as ~/.ssh/id_ed25519, of the new SSH key. If you have an existing key pair, ensure your public key is in the your ~/.ssh directory.

    If you plan to install an OKD cluster that uses the Fedora cryptographic libraries that have been submitted to NIST for FIPS 140-2/140-3 Validation on only the x86_64, ppc64le, and s390x architectures, do not create a key that uses the ed25519 algorithm. Instead, create a key that uses the rsa or ecdsa algorithm.

  2. View the public SSH key:

    1. $ cat <path>/<file_name>.pub

    For example, run the following to view the ~/.ssh/id_ed25519.pub public key:

    1. $ cat ~/.ssh/id_ed25519.pub
  3. Add the SSH private key identity to the SSH agent for your local user, if it has not already been added. SSH agent management of the key is required for password-less SSH authentication onto your cluster nodes, or if you want to use the ./openshift-install gather command.

    On some distributions, default SSH private key identities such as ~/.ssh/id_rsa and ~/.ssh/id_dsa are managed automatically.

    1. If the ssh-agent process is not already running for your local user, start it as a background task:

      1. $ eval "$(ssh-agent -s)"

      Example output

      1. Agent pid 31874

      If your cluster is in FIPS mode, only use FIPS-compliant algorithms to generate the SSH key. The key must be either RSA or ECDSA.

  4. Add your SSH private key to the ssh-agent:

    1. $ ssh-add <path>/<file_name> (1)
    1Specify the path and file name for your SSH private key, such as ~/.ssh/id_ed25519

    Example output

    1. Identity added: /home/<you>/<path>/<file_name> (<computer_name>)

Next steps

  • When you install OKD, provide the SSH public key to the installation program. If you install a cluster on infrastructure that you provision, you must provide the key to the installation program.

Creating the installation files for AWS

To install OKD on Amazon Web Services (AWS) using user-provisioned infrastructure, you must generate the files that the installation program needs to deploy your cluster and modify them so that the cluster creates only the machines that it will use. You generate and customize the install-config.yaml file, Kubernetes manifests, and Ignition config files. You also have the option to first set up a separate var partition during the preparation phases of installation.

Optional: Creating a separate /var partition

It is recommended that disk partitioning for OKD be left to the installer. However, there are cases where you might want to create separate partitions in a part of the filesystem that you expect to grow.

OKD supports the addition of a single partition to attach storage to either the /var partition or a subdirectory of /var. For example:

  • /var/lib/containers: Holds container-related content that can grow as more images and containers are added to a system.

  • /var/lib/etcd: Holds data that you might want to keep separate for purposes such as performance optimization of etcd storage.

  • /var: Holds data that you might want to keep separate for purposes such as auditing.

Storing the contents of a /var directory separately makes it easier to grow storage for those areas as needed and reinstall OKD at a later date and keep that data intact. With this method, you will not have to pull all your containers again, nor will you have to copy massive log files when you update systems.

Because /var must be in place before a fresh installation of Fedora CoreOS (FCOS), the following procedure sets up the separate /var partition by creating a machine config manifest that is inserted during the openshift-install preparation phases of an OKD installation.

If you follow the steps to create a separate /var partition in this procedure, it is not necessary to create the Kubernetes manifest and Ignition config files again as described later in this section.

Procedure

  1. Create a directory to hold the OKD installation files:

    1. $ mkdir $HOME/clusterconfig
  2. Run openshift-install to create a set of files in the manifest and openshift subdirectories. Answer the system questions as you are prompted:

    1. $ openshift-install create manifests --dir $HOME/clusterconfig

    Example output

    1. ? SSH Public Key ...
    2. INFO Credentials loaded from the "myprofile" profile in file "/home/myuser/.aws/credentials"
    3. INFO Consuming Install Config from target directory
    4. INFO Manifests created in: $HOME/clusterconfig/manifests and $HOME/clusterconfig/openshift
  3. Optional: Confirm that the installation program created manifests in the clusterconfig/openshift directory:

    1. $ ls $HOME/clusterconfig/openshift/

    Example output

    1. 99_kubeadmin-password-secret.yaml
    2. 99_openshift-cluster-api_master-machines-0.yaml
    3. 99_openshift-cluster-api_master-machines-1.yaml
    4. 99_openshift-cluster-api_master-machines-2.yaml
    5. ...
  4. Create a Butane config that configures the additional partition. For example, name the file $HOME/clusterconfig/98-var-partition.bu, change the disk device name to the name of the storage device on the worker systems, and set the storage size as appropriate. This example places the /var directory on a separate partition:

    1. variant: openshift
    2. version: 4.14.0
    3. metadata:
    4. labels:
    5. machineconfiguration.openshift.io/role: worker
    6. name: 98-var-partition
    7. storage:
    8. disks:
    9. - device: /dev/disk/by-id/<device_name> (1)
    10. partitions:
    11. - label: var
    12. start_mib: <partition_start_offset> (2)
    13. size_mib: <partition_size> (3)
    14. filesystems:
    15. - device: /dev/disk/by-partlabel/var
    16. path: /var
    17. format: xfs
    18. mount_options: [defaults, prjquota] (4)
    19. with_mount_unit: true
    1The storage device name of the disk that you want to partition.
    2When adding a data partition to the boot disk, a minimum value of 25000 MiB (Mebibytes) is recommended. The root file system is automatically resized to fill all available space up to the specified offset. If no value is specified, or if the specified value is smaller than the recommended minimum, the resulting root file system will be too small, and future reinstalls of FCOS might overwrite the beginning of the data partition.
    3The size of the data partition in mebibytes.
    4The prjquota mount option must be enabled for filesystems used for container storage.

    When creating a separate /var partition, you cannot use different instance types for worker nodes, if the different instance types do not have the same device name.

  5. Create a manifest from the Butane config and save it to the clusterconfig/openshift directory. For example, run the following command:

    1. $ butane $HOME/clusterconfig/98-var-partition.bu -o $HOME/clusterconfig/openshift/98-var-partition.yaml
  6. Run openshift-install again to create Ignition configs from a set of files in the manifest and openshift subdirectories:

    1. $ openshift-install create ignition-configs --dir $HOME/clusterconfig
    2. $ ls $HOME/clusterconfig/
    3. auth bootstrap.ign master.ign metadata.json worker.ign

Now you can use the Ignition config files as input to the installation procedures to install Fedora CoreOS (FCOS) systems.

Creating the installation configuration file

Generate and customize the installation configuration file that the installation program needs to deploy your cluster.

Prerequisites

  • You obtained the OKD installation program for user-provisioned infrastructure and the pull secret for your cluster. For a restricted network installation, these files are on your mirror host.

  • You checked that you are deploying your cluster to a region with an accompanying Fedora CoreOS (FCOS) AMI published by Red Hat. If you are deploying to a region that requires a custom AMI, such as an AWS GovCloud region, you must create the install-config.yaml file manually.

Procedure

  1. Create the install-config.yaml file.

    1. Change to the directory that contains the installation program and run the following command:

      1. $ ./openshift-install create install-config --dir <installation_directory> (1)
      1For <installation_directory>, specify the directory name to store the files that the installation program creates.

      Specify an empty directory. Some installation assets, like bootstrap X.509 certificates have short expiration intervals, so you must not reuse an installation directory. If you want to reuse individual files from another cluster installation, you can copy them into your directory. However, the file names for the installation assets might change between releases. Use caution when copying installation files from an earlier OKD version.

    2. At the prompts, provide the configuration details for your cloud:

      1. Optional: Select an SSH key to use to access your cluster machines.

        For production OKD clusters on which you want to perform installation debugging or disaster recovery, specify an SSH key that your ssh-agent process uses.

      2. Select aws as the platform to target.

      3. If you do not have an AWS profile stored on your computer, enter the AWS access key ID and secret access key for the user that you configured to run the installation program.

        The AWS access key ID and secret access key are stored in ~/.aws/credentials in the home directory of the current user on the installation host. You are prompted for the credentials by the installation program if the credentials for the exported profile are not present in the file. Any credentials that you provide to the installation program are stored in the file.

      4. Select the AWS region to deploy the cluster to.

      5. Select the base domain for the Route 53 service that you configured for your cluster.

      6. Enter a descriptive name for your cluster.

      7. Paste the pull secret from the Red Hat OpenShift Cluster Manager. This field is optional.

  1. Edit the install-config.yaml file to give the additional information that is required for an installation in a restricted network.

    1. Update the pullSecret value to contain the authentication information for your registry:

      1. pullSecret: '{"auths":{"<local_registry>": {"auth": "<credentials>","email": "you@example.com"}}}'

      For <local_registry>, specify the registry domain name, and optionally the port, that your mirror registry uses to serve content. For example registry.example.com or registry.example.com:5000. For <credentials>, specify the base64-encoded user name and password for your mirror registry.

    2. Add the additionalTrustBundle parameter and value. The value must be the contents of the certificate file that you used for your mirror registry. The certificate file can be an existing, trusted certificate authority or the self-signed certificate that you generated for the mirror registry.

      1. additionalTrustBundle: |
      2. -----BEGIN CERTIFICATE-----
      3. ZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZZ
      4. -----END CERTIFICATE-----
    3. Add the image content resources:

      1. imageContentSources:
      2. - mirrors:
      3. - <local_registry>/<local_repository_name>/release
      4. source: quay.io/openshift-release-dev/ocp-release
      5. - mirrors:
      6. - <local_registry>/<local_repository_name>/release
      7. source: quay.io/openshift-release-dev/ocp-v4.0-art-dev

      Use the imageContentSources section from the output of the command to mirror the repository or the values that you used when you mirrored the content from the media that you brought into your restricted network.

    4. Optional: Set the publishing strategy to Internal:

      1. publish: Internal

      By setting this option, you create an internal Ingress Controller and a private load balancer.

  2. Optional: Back up the install-config.yaml file.

    The install-config.yaml file is consumed during the installation process. If you want to reuse the file, you must back it up now.

Additional resources

Configuring the cluster-wide proxy during installation

Production environments can deny direct access to the internet and instead have an HTTP or HTTPS proxy available. You can configure a new OKD cluster to use a proxy by configuring the proxy settings in the install-config.yaml file.

Prerequisites

  • You have an existing install-config.yaml file.

  • You reviewed the sites that your cluster requires access to and determined whether any of them need to bypass the proxy. By default, all cluster egress traffic is proxied, including calls to hosting cloud provider APIs. You added sites to the Proxy object’s spec.noProxy field to bypass the proxy if necessary.

    The Proxy object status.noProxy field is populated with the values of the networking.machineNetwork[].cidr, networking.clusterNetwork[].cidr, and networking.serviceNetwork[] fields from your installation configuration.

    For installations on Amazon Web Services (AWS), Google Cloud Platform (GCP), Microsoft Azure, and OpenStack, the Proxy object status.noProxy field is also populated with the instance metadata endpoint (169.254.169.254).

Procedure

  1. Edit your install-config.yaml file and add the proxy settings. For example:

    1. apiVersion: v1
    2. baseDomain: my.domain.com
    3. proxy:
    4. httpProxy: http://<username>:<pswd>@<ip>:<port> (1)
    5. httpsProxy: https://<username>:<pswd>@<ip>:<port> (2)
    6. noProxy: ec2.<aws_region>.amazonaws.com,elasticloadbalancing.<aws_region>.amazonaws.com,s3.<aws_region>.amazonaws.com (3)
    7. additionalTrustBundle: | (4)
    8. -----BEGIN CERTIFICATE-----
    9. <MY_TRUSTED_CA_CERT>
    10. -----END CERTIFICATE-----
    11. additionalTrustBundlePolicy: <policy_to_add_additionalTrustBundle> (5)
    1A proxy URL to use for creating HTTP connections outside the cluster. The URL scheme must be http.
    2A proxy URL to use for creating HTTPS connections outside the cluster.
    3A comma-separated list of destination domain names, IP addresses, or other network CIDRs to exclude from proxying. Preface a domain with . to match subdomains only. For example, .y.com matches x.y.com, but not y.com. Use * to bypass the proxy for all destinations. If you have added the Amazon EC2,Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints to the noProxy field.
    4If provided, the installation program generates a config map that is named user-ca-bundle in the openshift-config namespace that contains one or more additional CA certificates that are required for proxying HTTPS connections. The Cluster Network Operator then creates a trusted-ca-bundle config map that merges these contents with the Fedora CoreOS (FCOS) trust bundle, and this config map is referenced in the trustedCA field of the Proxy object. The additionalTrustBundle field is required unless the proxy’s identity certificate is signed by an authority from the FCOS trust bundle.
    5Optional: The policy to determine the configuration of the Proxy object to reference the user-ca-bundle config map in the trustedCA field. The allowed values are Proxyonly and Always. Use Proxyonly to reference the user-ca-bundle config map only when http/https proxy is configured. Use Always to always reference the user-ca-bundle config map. The default value is Proxyonly.

    The installation program does not support the proxy readinessEndpoints field.

    If the installer times out, restart and then complete the deployment by using the wait-for command of the installer. For example:

    1. $ ./openshift-install wait-for install-complete log-level debug
  2. Save the file and reference it when installing OKD.

The installation program creates a cluster-wide proxy that is named cluster that uses the proxy settings in the provided install-config.yaml file. If no proxy settings are provided, a cluster Proxy object is still created, but it will have a nil spec.

Only the Proxy object named cluster is supported, and no additional proxies can be created.

Creating the Kubernetes manifest and Ignition config files

Because you must modify some cluster definition files and manually start the cluster machines, you must generate the Kubernetes manifest and Ignition config files that the cluster needs to configure the machines.

The installation configuration file transforms into the Kubernetes manifests. The manifests wrap into the Ignition configuration files, which are later used to configure the cluster machines.

  • The Ignition config files that the OKD installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

  • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

Prerequisites

  • You obtained the OKD installation program. For a restricted network installation, these files are on your mirror host.

  • You created the install-config.yaml installation configuration file.

Procedure

  1. Change to the directory that contains the OKD installation program and generate the Kubernetes manifests for the cluster:

    1. $ ./openshift-install create manifests --dir <installation_directory> (1)
    1For <installation_directory>, specify the installation directory that contains the install-config.yaml file you created.
  2. Remove the Kubernetes manifest files that define the control plane machines:

    1. $ rm -f <installation_directory>/openshift/99_openshift-cluster-api_master-machines-*.yaml

    By removing these files, you prevent the cluster from automatically generating control plane machines.

  3. Remove the Kubernetes manifest files that define the control plane machine set:

    1. $ rm -f <installation_directory>/openshift/99_openshift-machine-api_master-control-plane-machine-set.yaml
    1. $ rm -f <installation_directory>/openshift/99_openshift-cluster-api_worker-machineset-*.yaml

    Because you create and manage the worker machines yourself, you do not need to initialize these machines.

  4. Check that the mastersSchedulable parameter in the <installation_directory>/manifests/cluster-scheduler-02-config.yml Kubernetes manifest file is set to false. This setting prevents pods from being scheduled on the control plane machines:

    1. Open the <installation_directory>/manifests/cluster-scheduler-02-config.yml file.

    2. Locate the mastersSchedulable parameter and ensure that it is set to false.

    3. Save and exit the file.

  5. Optional: If you do not want the Ingress Operator to create DNS records on your behalf, remove the privateZone and publicZone sections from the <installation_directory>/manifests/cluster-dns-02-config.yml DNS configuration file:

    1. apiVersion: config.openshift.io/v1
    2. kind: DNS
    3. metadata:
    4. creationTimestamp: null
    5. name: cluster
    6. spec:
    7. baseDomain: example.openshift.com
    8. privateZone: (1)
    9. id: mycluster-100419-private-zone
    10. publicZone: (1)
    11. id: example.openshift.com
    12. status: {}
    1Remove this section completely.

    If you do so, you must add ingress DNS records manually in a later step.

  6. To create the Ignition configuration files, run the following command from the directory that contains the installation program:

    1. $ ./openshift-install create ignition-configs --dir <installation_directory> (1)
    1For <installation_directory>, specify the same installation directory.

    Ignition config files are created for the bootstrap, control plane, and compute nodes in the installation directory. The kubeadmin-password and kubeconfig files are created in the ./<installation_directory>/auth directory:

    1. .
    2. ├── auth
    3. ├── kubeadmin-password
    4. └── kubeconfig
    5. ├── bootstrap.ign
    6. ├── master.ign
    7. ├── metadata.json
    8. └── worker.ign

Additional resources

Extracting the infrastructure name

The Ignition config files contain a unique cluster identifier that you can use to uniquely identify your cluster in Amazon Web Services (AWS). The infrastructure name is also used to locate the appropriate AWS resources during an OKD installation. The provided CloudFormation templates contain references to this infrastructure name, so you must extract it.

Prerequisites

  • You obtained the OKD installation program and the pull secret for your cluster.

  • You generated the Ignition config files for your cluster.

  • You installed the jq package.

Procedure

  • To extract and view the infrastructure name from the Ignition config file metadata, run the following command:

    1. $ jq -r .infraID <installation_directory>/metadata.json (1)
    1For <installation_directory>, specify the path to the directory that you stored the installation files in.

    Example output

    1. openshift-vw9j6 (1)
    1The output of this command is your cluster name and a random string.

Creating a VPC in AWS

You must create a Virtual Private Cloud (VPC) in Amazon Web Services (AWS) for your OKD cluster to use. You can customize the VPC to meet your requirements, including VPN and route tables.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the VPC.

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

Procedure

  1. Create a JSON file that contains the parameter values that the template requires:

    1. [
    2. {
    3. "ParameterKey": "VpcCidr", (1)
    4. "ParameterValue": "10.0.0.0/16" (2)
    5. },
    6. {
    7. "ParameterKey": "AvailabilityZoneCount", (3)
    8. "ParameterValue": "1" (4)
    9. },
    10. {
    11. "ParameterKey": "SubnetBits", (5)
    12. "ParameterValue": "12" (6)
    13. }
    14. ]
    1The CIDR block for the VPC.
    2Specify a CIDR block in the format x.x.x.x/16-24.
    3The number of availability zones to deploy the VPC in.
    4Specify an integer between 1 and 3.
    5The size of each subnet in each availability zone.
    6Specify an integer between 5 and 13, where 5 is /27 and 13 is /19.
  2. Copy the template from the CloudFormation template for the VPC section of this topic and save it as a YAML file on your computer. This template describes the VPC that your cluster requires.

  3. Launch the CloudFormation template to create a stack of AWS resources that represent the VPC:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml (2)
    3. --parameters file://<parameters>.json (3)
    1<name> is the name for the CloudFormation stack, such as cluster-vpc. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-vpc/dbedae40-2fd3-11eb-820e-12a48460849f
  4. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:

    VpcId

    The ID of your VPC.

    PublicSubnetIds

    The IDs of the new public subnets.

    PrivateSubnetIds

    The IDs of the new private subnets.

CloudFormation template for the VPC

You can use the following CloudFormation template to deploy the VPC that you need for your OKD cluster.

CloudFormation template for the VPC

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for Best Practice VPC with 1-3 AZs
  3. Parameters:
  4. VpcCidr:
  5. AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
  6. ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
  7. Default: 10.0.0.0/16
  8. Description: CIDR block for VPC.
  9. Type: String
  10. AvailabilityZoneCount:
  11. ConstraintDescription: "The number of availability zones. (Min: 1, Max: 3)"
  12. MinValue: 1
  13. MaxValue: 3
  14. Default: 1
  15. Description: "How many AZs to create VPC subnets for. (Min: 1, Max: 3)"
  16. Type: Number
  17. SubnetBits:
  18. ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/19-27.
  19. MinValue: 5
  20. MaxValue: 13
  21. Default: 12
  22. Description: "Size of each subnet to create within the availability zones. (Min: 5 = /27, Max: 13 = /19)"
  23. Type: Number
  24. Metadata:
  25. AWS::CloudFormation::Interface:
  26. ParameterGroups:
  27. - Label:
  28. default: "Network Configuration"
  29. Parameters:
  30. - VpcCidr
  31. - SubnetBits
  32. - Label:
  33. default: "Availability Zones"
  34. Parameters:
  35. - AvailabilityZoneCount
  36. ParameterLabels:
  37. AvailabilityZoneCount:
  38. default: "Availability Zone Count"
  39. VpcCidr:
  40. default: "VPC CIDR"
  41. SubnetBits:
  42. default: "Bits Per Subnet"
  43. Conditions:
  44. DoAz3: !Equals [3, !Ref AvailabilityZoneCount]
  45. DoAz2: !Or [!Equals [2, !Ref AvailabilityZoneCount], Condition: DoAz3]
  46. Resources:
  47. VPC:
  48. Type: "AWS::EC2::VPC"
  49. Properties:
  50. EnableDnsSupport: "true"
  51. EnableDnsHostnames: "true"
  52. CidrBlock: !Ref VpcCidr
  53. PublicSubnet:
  54. Type: "AWS::EC2::Subnet"
  55. Properties:
  56. VpcId: !Ref VPC
  57. CidrBlock: !Select [0, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  58. AvailabilityZone: !Select
  59. - 0
  60. - Fn::GetAZs: !Ref "AWS::Region"
  61. PublicSubnet2:
  62. Type: "AWS::EC2::Subnet"
  63. Condition: DoAz2
  64. Properties:
  65. VpcId: !Ref VPC
  66. CidrBlock: !Select [1, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  67. AvailabilityZone: !Select
  68. - 1
  69. - Fn::GetAZs: !Ref "AWS::Region"
  70. PublicSubnet3:
  71. Type: "AWS::EC2::Subnet"
  72. Condition: DoAz3
  73. Properties:
  74. VpcId: !Ref VPC
  75. CidrBlock: !Select [2, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  76. AvailabilityZone: !Select
  77. - 2
  78. - Fn::GetAZs: !Ref "AWS::Region"
  79. InternetGateway:
  80. Type: "AWS::EC2::InternetGateway"
  81. GatewayToInternet:
  82. Type: "AWS::EC2::VPCGatewayAttachment"
  83. Properties:
  84. VpcId: !Ref VPC
  85. InternetGatewayId: !Ref InternetGateway
  86. PublicRouteTable:
  87. Type: "AWS::EC2::RouteTable"
  88. Properties:
  89. VpcId: !Ref VPC
  90. PublicRoute:
  91. Type: "AWS::EC2::Route"
  92. DependsOn: GatewayToInternet
  93. Properties:
  94. RouteTableId: !Ref PublicRouteTable
  95. DestinationCidrBlock: 0.0.0.0/0
  96. GatewayId: !Ref InternetGateway
  97. PublicSubnetRouteTableAssociation:
  98. Type: "AWS::EC2::SubnetRouteTableAssociation"
  99. Properties:
  100. SubnetId: !Ref PublicSubnet
  101. RouteTableId: !Ref PublicRouteTable
  102. PublicSubnetRouteTableAssociation2:
  103. Type: "AWS::EC2::SubnetRouteTableAssociation"
  104. Condition: DoAz2
  105. Properties:
  106. SubnetId: !Ref PublicSubnet2
  107. RouteTableId: !Ref PublicRouteTable
  108. PublicSubnetRouteTableAssociation3:
  109. Condition: DoAz3
  110. Type: "AWS::EC2::SubnetRouteTableAssociation"
  111. Properties:
  112. SubnetId: !Ref PublicSubnet3
  113. RouteTableId: !Ref PublicRouteTable
  114. PrivateSubnet:
  115. Type: "AWS::EC2::Subnet"
  116. Properties:
  117. VpcId: !Ref VPC
  118. CidrBlock: !Select [3, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  119. AvailabilityZone: !Select
  120. - 0
  121. - Fn::GetAZs: !Ref "AWS::Region"
  122. PrivateRouteTable:
  123. Type: "AWS::EC2::RouteTable"
  124. Properties:
  125. VpcId: !Ref VPC
  126. PrivateSubnetRouteTableAssociation:
  127. Type: "AWS::EC2::SubnetRouteTableAssociation"
  128. Properties:
  129. SubnetId: !Ref PrivateSubnet
  130. RouteTableId: !Ref PrivateRouteTable
  131. NAT:
  132. DependsOn:
  133. - GatewayToInternet
  134. Type: "AWS::EC2::NatGateway"
  135. Properties:
  136. AllocationId:
  137. "Fn::GetAtt":
  138. - EIP
  139. - AllocationId
  140. SubnetId: !Ref PublicSubnet
  141. EIP:
  142. Type: "AWS::EC2::EIP"
  143. Properties:
  144. Domain: vpc
  145. Route:
  146. Type: "AWS::EC2::Route"
  147. Properties:
  148. RouteTableId:
  149. Ref: PrivateRouteTable
  150. DestinationCidrBlock: 0.0.0.0/0
  151. NatGatewayId:
  152. Ref: NAT
  153. PrivateSubnet2:
  154. Type: "AWS::EC2::Subnet"
  155. Condition: DoAz2
  156. Properties:
  157. VpcId: !Ref VPC
  158. CidrBlock: !Select [4, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  159. AvailabilityZone: !Select
  160. - 1
  161. - Fn::GetAZs: !Ref "AWS::Region"
  162. PrivateRouteTable2:
  163. Type: "AWS::EC2::RouteTable"
  164. Condition: DoAz2
  165. Properties:
  166. VpcId: !Ref VPC
  167. PrivateSubnetRouteTableAssociation2:
  168. Type: "AWS::EC2::SubnetRouteTableAssociation"
  169. Condition: DoAz2
  170. Properties:
  171. SubnetId: !Ref PrivateSubnet2
  172. RouteTableId: !Ref PrivateRouteTable2
  173. NAT2:
  174. DependsOn:
  175. - GatewayToInternet
  176. Type: "AWS::EC2::NatGateway"
  177. Condition: DoAz2
  178. Properties:
  179. AllocationId:
  180. "Fn::GetAtt":
  181. - EIP2
  182. - AllocationId
  183. SubnetId: !Ref PublicSubnet2
  184. EIP2:
  185. Type: "AWS::EC2::EIP"
  186. Condition: DoAz2
  187. Properties:
  188. Domain: vpc
  189. Route2:
  190. Type: "AWS::EC2::Route"
  191. Condition: DoAz2
  192. Properties:
  193. RouteTableId:
  194. Ref: PrivateRouteTable2
  195. DestinationCidrBlock: 0.0.0.0/0
  196. NatGatewayId:
  197. Ref: NAT2
  198. PrivateSubnet3:
  199. Type: "AWS::EC2::Subnet"
  200. Condition: DoAz3
  201. Properties:
  202. VpcId: !Ref VPC
  203. CidrBlock: !Select [5, !Cidr [!Ref VpcCidr, 6, !Ref SubnetBits]]
  204. AvailabilityZone: !Select
  205. - 2
  206. - Fn::GetAZs: !Ref "AWS::Region"
  207. PrivateRouteTable3:
  208. Type: "AWS::EC2::RouteTable"
  209. Condition: DoAz3
  210. Properties:
  211. VpcId: !Ref VPC
  212. PrivateSubnetRouteTableAssociation3:
  213. Type: "AWS::EC2::SubnetRouteTableAssociation"
  214. Condition: DoAz3
  215. Properties:
  216. SubnetId: !Ref PrivateSubnet3
  217. RouteTableId: !Ref PrivateRouteTable3
  218. NAT3:
  219. DependsOn:
  220. - GatewayToInternet
  221. Type: "AWS::EC2::NatGateway"
  222. Condition: DoAz3
  223. Properties:
  224. AllocationId:
  225. "Fn::GetAtt":
  226. - EIP3
  227. - AllocationId
  228. SubnetId: !Ref PublicSubnet3
  229. EIP3:
  230. Type: "AWS::EC2::EIP"
  231. Condition: DoAz3
  232. Properties:
  233. Domain: vpc
  234. Route3:
  235. Type: "AWS::EC2::Route"
  236. Condition: DoAz3
  237. Properties:
  238. RouteTableId:
  239. Ref: PrivateRouteTable3
  240. DestinationCidrBlock: 0.0.0.0/0
  241. NatGatewayId:
  242. Ref: NAT3
  243. S3Endpoint:
  244. Type: AWS::EC2::VPCEndpoint
  245. Properties:
  246. PolicyDocument:
  247. Version: 2012-10-17
  248. Statement:
  249. - Effect: Allow
  250. Principal: '*'
  251. Action:
  252. - '*'
  253. Resource:
  254. - '*'
  255. RouteTableIds:
  256. - !Ref PublicRouteTable
  257. - !Ref PrivateRouteTable
  258. - !If [DoAz2, !Ref PrivateRouteTable2, !Ref "AWS::NoValue"]
  259. - !If [DoAz3, !Ref PrivateRouteTable3, !Ref "AWS::NoValue"]
  260. ServiceName: !Join
  261. - ''
  262. - - com.amazonaws.
  263. - !Ref 'AWS::Region'
  264. - .s3
  265. VpcId: !Ref VPC
  266. Outputs:
  267. VpcId:
  268. Description: ID of the new VPC.
  269. Value: !Ref VPC
  270. PublicSubnetIds:
  271. Description: Subnet IDs of the public subnets.
  272. Value:
  273. !Join [
  274. ",",
  275. [!Ref PublicSubnet, !If [DoAz2, !Ref PublicSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PublicSubnet3, !Ref "AWS::NoValue"]]
  276. ]
  277. PrivateSubnetIds:
  278. Description: Subnet IDs of the private subnets.
  279. Value:
  280. !Join [
  281. ",",
  282. [!Ref PrivateSubnet, !If [DoAz2, !Ref PrivateSubnet2, !Ref "AWS::NoValue"], !If [DoAz3, !Ref PrivateSubnet3, !Ref "AWS::NoValue"]]
  283. ]
  284. PublicRouteTableId:
  285. Description: Public Route table ID
  286. Value: !Ref PublicRouteTable

Creating networking and load balancing components in AWS

You must configure networking and classic or network load balancing in Amazon Web Services (AWS) that your OKD cluster can use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the networking and load balancing components that your OKD cluster requires. The template also creates a hosted zone and subnet tags.

You can run the template multiple times within a single Virtual Private Cloud (VPC).

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

Procedure

  1. Obtain the hosted zone ID for the Route 53 base domain that you specified in the install-config.yaml file for your cluster. You can obtain details about your hosted zone by running the following command:

    1. $ aws route53 list-hosted-zones-by-name --dns-name <route53_domain> (1)
    1For the <route53_domain>, specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster.

    Example output

    1. mycluster.example.com. False 100
    2. HOSTEDZONES 65F8F38E-2268-B835-E15C-AB55336FCBFA /hostedzone/Z21IXYZABCZ2A4 mycluster.example.com. 10

    In the example output, the hosted zone ID is Z21IXYZABCZ2A4.

  2. Create a JSON file that contains the parameter values that the template requires:

    1. [
    2. {
    3. "ParameterKey": "ClusterName", (1)
    4. "ParameterValue": "mycluster" (2)
    5. },
    6. {
    7. "ParameterKey": "InfrastructureName", (3)
    8. "ParameterValue": "mycluster-<random_string>" (4)
    9. },
    10. {
    11. "ParameterKey": "HostedZoneId", (5)
    12. "ParameterValue": "<random_string>" (6)
    13. },
    14. {
    15. "ParameterKey": "HostedZoneName", (7)
    16. "ParameterValue": "example.com" (8)
    17. },
    18. {
    19. "ParameterKey": "PublicSubnets", (9)
    20. "ParameterValue": "subnet-<random_string>" (10)
    21. },
    22. {
    23. "ParameterKey": "PrivateSubnets", (11)
    24. "ParameterValue": "subnet-<random_string>" (12)
    25. },
    26. {
    27. "ParameterKey": "VpcId", (13)
    28. "ParameterValue": "vpc-<random_string>" (14)
    29. }
    30. ]
    1A short, representative cluster name to use for hostnames, etc.
    2Specify the cluster name that you used when you generated the install-config.yaml file for the cluster.
    3The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
    4Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
    5The Route 53 public zone ID to register the targets with.
    6Specify the Route 53 public zone ID, which as a format similar to Z21IXYZABCZ2A4. You can obtain this value from the AWS console.
    7The Route 53 zone to register the targets with.
    8Specify the Route 53 base domain that you used when you generated the install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
    9The public subnets that you created for your VPC.
    10Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
    11The private subnets that you created for your VPC.
    12Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
    13The VPC that you created for the cluster.
    14Specify the VpcId value from the output of the CloudFormation template for the VPC.
  3. Copy the template from the CloudFormation template for the network and load balancers section of this topic and save it as a YAML file on your computer. This template describes the networking and load balancing objects that your cluster requires.

    If you are deploying your cluster to an AWS government or secret region, you must update the InternalApiServerRecord in the CloudFormation template to use CNAME records. Records of type ALIAS are not supported for AWS government regions.

  4. Launch the CloudFormation template to create a stack of AWS resources that provide the networking and load balancing components:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml (2)
    3. --parameters file://<parameters>.json (3)
    4. --capabilities CAPABILITY_NAMED_IAM (4)
    1<name> is the name for the CloudFormation stack, such as cluster-dns. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
    4You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role resources.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-dns/cd3e5de0-2fd4-11eb-5cf0-12be5c33a183
  5. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:

    PrivateHostedZoneId

    Hosted zone ID for the private DNS.

    ExternalApiLoadBalancerName

    Full name of the external API load balancer.

    InternalApiLoadBalancerName

    Full name of the internal API load balancer.

    ApiServerDnsName

    Full hostname of the API server.

    RegisterNlbIpTargetsLambda

    Lambda ARN useful to help register/deregister IP targets for these load balancers.

    ExternalApiTargetGroupArn

    ARN of external API target group.

    InternalApiTargetGroupArn

    ARN of internal API target group.

    InternalServiceTargetGroupArn

    ARN of internal service target group.

CloudFormation template for the network and load balancers

You can use the following CloudFormation template to deploy the networking objects and load balancers that you need for your OKD cluster.

CloudFormation template for the network and load balancers

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for OpenShift Cluster Network Elements (Route53 & LBs)
  3. Parameters:
  4. ClusterName:
  5. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  6. MaxLength: 27
  7. MinLength: 1
  8. ConstraintDescription: Cluster name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  9. Description: A short, representative cluster name to use for host names and other identifying names.
  10. Type: String
  11. InfrastructureName:
  12. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  13. MaxLength: 27
  14. MinLength: 1
  15. ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  16. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
  17. Type: String
  18. HostedZoneId:
  19. Description: The Route53 public zone ID to register the targets with, such as Z21IXYZABCZ2A4.
  20. Type: String
  21. HostedZoneName:
  22. Description: The Route53 zone to register the targets with, such as example.com. Omit the trailing period.
  23. Type: String
  24. Default: "example.com"
  25. PublicSubnets:
  26. Description: The internet-facing subnets.
  27. Type: List<AWS::EC2::Subnet::Id>
  28. PrivateSubnets:
  29. Description: The internal subnets.
  30. Type: List<AWS::EC2::Subnet::Id>
  31. VpcId:
  32. Description: The VPC-scoped resources will belong to this VPC.
  33. Type: AWS::EC2::VPC::Id
  34. Metadata:
  35. AWS::CloudFormation::Interface:
  36. ParameterGroups:
  37. - Label:
  38. default: "Cluster Information"
  39. Parameters:
  40. - ClusterName
  41. - InfrastructureName
  42. - Label:
  43. default: "Network Configuration"
  44. Parameters:
  45. - VpcId
  46. - PublicSubnets
  47. - PrivateSubnets
  48. - Label:
  49. default: "DNS"
  50. Parameters:
  51. - HostedZoneName
  52. - HostedZoneId
  53. ParameterLabels:
  54. ClusterName:
  55. default: "Cluster Name"
  56. InfrastructureName:
  57. default: "Infrastructure Name"
  58. VpcId:
  59. default: "VPC ID"
  60. PublicSubnets:
  61. default: "Public Subnets"
  62. PrivateSubnets:
  63. default: "Private Subnets"
  64. HostedZoneName:
  65. default: "Public Hosted Zone Name"
  66. HostedZoneId:
  67. default: "Public Hosted Zone ID"
  68. Resources:
  69. ExtApiElb:
  70. Type: AWS::ElasticLoadBalancingV2::LoadBalancer
  71. Properties:
  72. Name: !Join ["-", [!Ref InfrastructureName, "ext"]]
  73. IpAddressType: ipv4
  74. Subnets: !Ref PublicSubnets
  75. Type: network
  76. IntApiElb:
  77. Type: AWS::ElasticLoadBalancingV2::LoadBalancer
  78. Properties:
  79. Name: !Join ["-", [!Ref InfrastructureName, "int"]]
  80. Scheme: internal
  81. IpAddressType: ipv4
  82. Subnets: !Ref PrivateSubnets
  83. Type: network
  84. IntDns:
  85. Type: "AWS::Route53::HostedZone"
  86. Properties:
  87. HostedZoneConfig:
  88. Comment: "Managed by CloudFormation"
  89. Name: !Join [".", [!Ref ClusterName, !Ref HostedZoneName]]
  90. HostedZoneTags:
  91. - Key: Name
  92. Value: !Join ["-", [!Ref InfrastructureName, "int"]]
  93. - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
  94. Value: "owned"
  95. VPCs:
  96. - VPCId: !Ref VpcId
  97. VPCRegion: !Ref "AWS::Region"
  98. ExternalApiServerRecord:
  99. Type: AWS::Route53::RecordSetGroup
  100. Properties:
  101. Comment: Alias record for the API server
  102. HostedZoneId: !Ref HostedZoneId
  103. RecordSets:
  104. - Name:
  105. !Join [
  106. ".",
  107. ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
  108. ]
  109. Type: A
  110. AliasTarget:
  111. HostedZoneId: !GetAtt ExtApiElb.CanonicalHostedZoneID
  112. DNSName: !GetAtt ExtApiElb.DNSName
  113. InternalApiServerRecord:
  114. Type: AWS::Route53::RecordSetGroup
  115. Properties:
  116. Comment: Alias record for the API server
  117. HostedZoneId: !Ref IntDns
  118. RecordSets:
  119. - Name:
  120. !Join [
  121. ".",
  122. ["api", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
  123. ]
  124. Type: A
  125. AliasTarget:
  126. HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
  127. DNSName: !GetAtt IntApiElb.DNSName
  128. - Name:
  129. !Join [
  130. ".",
  131. ["api-int", !Ref ClusterName, !Join ["", [!Ref HostedZoneName, "."]]],
  132. ]
  133. Type: A
  134. AliasTarget:
  135. HostedZoneId: !GetAtt IntApiElb.CanonicalHostedZoneID
  136. DNSName: !GetAtt IntApiElb.DNSName
  137. ExternalApiListener:
  138. Type: AWS::ElasticLoadBalancingV2::Listener
  139. Properties:
  140. DefaultActions:
  141. - Type: forward
  142. TargetGroupArn:
  143. Ref: ExternalApiTargetGroup
  144. LoadBalancerArn:
  145. Ref: ExtApiElb
  146. Port: 6443
  147. Protocol: TCP
  148. ExternalApiTargetGroup:
  149. Type: AWS::ElasticLoadBalancingV2::TargetGroup
  150. Properties:
  151. HealthCheckIntervalSeconds: 10
  152. HealthCheckPath: "/readyz"
  153. HealthCheckPort: 6443
  154. HealthCheckProtocol: HTTPS
  155. HealthyThresholdCount: 2
  156. UnhealthyThresholdCount: 2
  157. Port: 6443
  158. Protocol: TCP
  159. TargetType: ip
  160. VpcId:
  161. Ref: VpcId
  162. TargetGroupAttributes:
  163. - Key: deregistration_delay.timeout_seconds
  164. Value: 60
  165. InternalApiListener:
  166. Type: AWS::ElasticLoadBalancingV2::Listener
  167. Properties:
  168. DefaultActions:
  169. - Type: forward
  170. TargetGroupArn:
  171. Ref: InternalApiTargetGroup
  172. LoadBalancerArn:
  173. Ref: IntApiElb
  174. Port: 6443
  175. Protocol: TCP
  176. InternalApiTargetGroup:
  177. Type: AWS::ElasticLoadBalancingV2::TargetGroup
  178. Properties:
  179. HealthCheckIntervalSeconds: 10
  180. HealthCheckPath: "/readyz"
  181. HealthCheckPort: 6443
  182. HealthCheckProtocol: HTTPS
  183. HealthyThresholdCount: 2
  184. UnhealthyThresholdCount: 2
  185. Port: 6443
  186. Protocol: TCP
  187. TargetType: ip
  188. VpcId:
  189. Ref: VpcId
  190. TargetGroupAttributes:
  191. - Key: deregistration_delay.timeout_seconds
  192. Value: 60
  193. InternalServiceInternalListener:
  194. Type: AWS::ElasticLoadBalancingV2::Listener
  195. Properties:
  196. DefaultActions:
  197. - Type: forward
  198. TargetGroupArn:
  199. Ref: InternalServiceTargetGroup
  200. LoadBalancerArn:
  201. Ref: IntApiElb
  202. Port: 22623
  203. Protocol: TCP
  204. InternalServiceTargetGroup:
  205. Type: AWS::ElasticLoadBalancingV2::TargetGroup
  206. Properties:
  207. HealthCheckIntervalSeconds: 10
  208. HealthCheckPath: "/healthz"
  209. HealthCheckPort: 22623
  210. HealthCheckProtocol: HTTPS
  211. HealthyThresholdCount: 2
  212. UnhealthyThresholdCount: 2
  213. Port: 22623
  214. Protocol: TCP
  215. TargetType: ip
  216. VpcId:
  217. Ref: VpcId
  218. TargetGroupAttributes:
  219. - Key: deregistration_delay.timeout_seconds
  220. Value: 60
  221. RegisterTargetLambdaIamRole:
  222. Type: AWS::IAM::Role
  223. Properties:
  224. RoleName: !Join ["-", [!Ref InfrastructureName, "nlb", "lambda", "role"]]
  225. AssumeRolePolicyDocument:
  226. Version: "2012-10-17"
  227. Statement:
  228. - Effect: "Allow"
  229. Principal:
  230. Service:
  231. - "lambda.amazonaws.com"
  232. Action:
  233. - "sts:AssumeRole"
  234. Path: "/"
  235. Policies:
  236. - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
  237. PolicyDocument:
  238. Version: "2012-10-17"
  239. Statement:
  240. - Effect: "Allow"
  241. Action:
  242. [
  243. "elasticloadbalancing:RegisterTargets",
  244. "elasticloadbalancing:DeregisterTargets",
  245. ]
  246. Resource: !Ref InternalApiTargetGroup
  247. - Effect: "Allow"
  248. Action:
  249. [
  250. "elasticloadbalancing:RegisterTargets",
  251. "elasticloadbalancing:DeregisterTargets",
  252. ]
  253. Resource: !Ref InternalServiceTargetGroup
  254. - Effect: "Allow"
  255. Action:
  256. [
  257. "elasticloadbalancing:RegisterTargets",
  258. "elasticloadbalancing:DeregisterTargets",
  259. ]
  260. Resource: !Ref ExternalApiTargetGroup
  261. RegisterNlbIpTargets:
  262. Type: "AWS::Lambda::Function"
  263. Properties:
  264. Handler: "index.handler"
  265. Role:
  266. Fn::GetAtt:
  267. - "RegisterTargetLambdaIamRole"
  268. - "Arn"
  269. Code:
  270. ZipFile: |
  271. import json
  272. import boto3
  273. import cfnresponse
  274. def handler(event, context):
  275. elb = boto3.client('elbv2')
  276. if event['RequestType'] == 'Delete':
  277. elb.deregister_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
  278. elif event['RequestType'] == 'Create':
  279. elb.register_targets(TargetGroupArn=event['ResourceProperties']['TargetArn'],Targets=[{'Id': event['ResourceProperties']['TargetIp']}])
  280. responseData = {}
  281. cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['TargetArn']+event['ResourceProperties']['TargetIp'])
  282. Runtime: "python3.8"
  283. Timeout: 120
  284. RegisterSubnetTagsLambdaIamRole:
  285. Type: AWS::IAM::Role
  286. Properties:
  287. RoleName: !Join ["-", [!Ref InfrastructureName, "subnet-tags-lambda-role"]]
  288. AssumeRolePolicyDocument:
  289. Version: "2012-10-17"
  290. Statement:
  291. - Effect: "Allow"
  292. Principal:
  293. Service:
  294. - "lambda.amazonaws.com"
  295. Action:
  296. - "sts:AssumeRole"
  297. Path: "/"
  298. Policies:
  299. - PolicyName: !Join ["-", [!Ref InfrastructureName, "subnet-tagging-policy"]]
  300. PolicyDocument:
  301. Version: "2012-10-17"
  302. Statement:
  303. - Effect: "Allow"
  304. Action:
  305. [
  306. "ec2:DeleteTags",
  307. "ec2:CreateTags"
  308. ]
  309. Resource: "arn:aws:ec2:*:*:subnet/*"
  310. - Effect: "Allow"
  311. Action:
  312. [
  313. "ec2:DescribeSubnets",
  314. "ec2:DescribeTags"
  315. ]
  316. Resource: "*"
  317. RegisterSubnetTags:
  318. Type: "AWS::Lambda::Function"
  319. Properties:
  320. Handler: "index.handler"
  321. Role:
  322. Fn::GetAtt:
  323. - "RegisterSubnetTagsLambdaIamRole"
  324. - "Arn"
  325. Code:
  326. ZipFile: |
  327. import json
  328. import boto3
  329. import cfnresponse
  330. def handler(event, context):
  331. ec2_client = boto3.client('ec2')
  332. if event['RequestType'] == 'Delete':
  333. for subnet_id in event['ResourceProperties']['Subnets']:
  334. ec2_client.delete_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName']}]);
  335. elif event['RequestType'] == 'Create':
  336. for subnet_id in event['ResourceProperties']['Subnets']:
  337. ec2_client.create_tags(Resources=[subnet_id], Tags=[{'Key': 'kubernetes.io/cluster/' + event['ResourceProperties']['InfrastructureName'], 'Value': 'shared'}]);
  338. responseData = {}
  339. cfnresponse.send(event, context, cfnresponse.SUCCESS, responseData, event['ResourceProperties']['InfrastructureName']+event['ResourceProperties']['Subnets'][0])
  340. Runtime: "python3.8"
  341. Timeout: 120
  342. RegisterPublicSubnetTags:
  343. Type: Custom::SubnetRegister
  344. Properties:
  345. ServiceToken: !GetAtt RegisterSubnetTags.Arn
  346. InfrastructureName: !Ref InfrastructureName
  347. Subnets: !Ref PublicSubnets
  348. RegisterPrivateSubnetTags:
  349. Type: Custom::SubnetRegister
  350. Properties:
  351. ServiceToken: !GetAtt RegisterSubnetTags.Arn
  352. InfrastructureName: !Ref InfrastructureName
  353. Subnets: !Ref PrivateSubnets
  354. Outputs:
  355. PrivateHostedZoneId:
  356. Description: Hosted zone ID for the private DNS, which is required for private records.
  357. Value: !Ref IntDns
  358. ExternalApiLoadBalancerName:
  359. Description: Full name of the external API load balancer.
  360. Value: !GetAtt ExtApiElb.LoadBalancerFullName
  361. InternalApiLoadBalancerName:
  362. Description: Full name of the internal API load balancer.
  363. Value: !GetAtt IntApiElb.LoadBalancerFullName
  364. ApiServerDnsName:
  365. Description: Full hostname of the API server, which is required for the Ignition config files.
  366. Value: !Join [".", ["api-int", !Ref ClusterName, !Ref HostedZoneName]]
  367. RegisterNlbIpTargetsLambda:
  368. Description: Lambda ARN useful to help register or deregister IP targets for these load balancers.
  369. Value: !GetAtt RegisterNlbIpTargets.Arn
  370. ExternalApiTargetGroupArn:
  371. Description: ARN of the external API target group.
  372. Value: !Ref ExternalApiTargetGroup
  373. InternalApiTargetGroupArn:
  374. Description: ARN of the internal API target group.
  375. Value: !Ref InternalApiTargetGroup
  376. InternalServiceTargetGroupArn:
  377. Description: ARN of the internal service target group.
  378. Value: !Ref InternalServiceTargetGroup

If you are deploying your cluster to an AWS government or secret region, you must update the InternalApiServerRecord to use CNAME records. Records of type ALIAS are not supported for AWS government regions. For example:

  1. Type: CNAME
  2. TTL: 10
  3. ResourceRecords:
  4. - !GetAtt IntApiElb.DNSName

Additional resources

Creating security group and roles in AWS

You must create security groups and roles in Amazon Web Services (AWS) for your OKD cluster to use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the security groups and roles that your OKD cluster requires.

If you do not use the provided CloudFormation template to create your AWS infrastructure, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

Procedure

  1. Create a JSON file that contains the parameter values that the template requires:

    1. [
    2. {
    3. "ParameterKey": "InfrastructureName", (1)
    4. "ParameterValue": "mycluster-<random_string>" (2)
    5. },
    6. {
    7. "ParameterKey": "VpcCidr", (3)
    8. "ParameterValue": "10.0.0.0/16" (4)
    9. },
    10. {
    11. "ParameterKey": "PrivateSubnets", (5)
    12. "ParameterValue": "subnet-<random_string>" (6)
    13. },
    14. {
    15. "ParameterKey": "VpcId", (7)
    16. "ParameterValue": "vpc-<random_string>" (8)
    17. }
    18. ]
    1The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
    2Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
    3The CIDR block for the VPC.
    4Specify the CIDR block parameter that you used for the VPC that you defined in the form x.x.x.x/16-24.
    5The private subnets that you created for your VPC.
    6Specify the PrivateSubnetIds value from the output of the CloudFormation template for the VPC.
    7The VPC that you created for the cluster.
    8Specify the VpcId value from the output of the CloudFormation template for the VPC.
  2. Copy the template from the CloudFormation template for security objects section of this topic and save it as a YAML file on your computer. This template describes the security groups and roles that your cluster requires.

  3. Launch the CloudFormation template to create a stack of AWS resources that represent the security groups and roles:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml (2)
    3. --parameters file://<parameters>.json (3)
    4. --capabilities CAPABILITY_NAMED_IAM (4)
    1<name> is the name for the CloudFormation stack, such as cluster-sec. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
    4You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-sec/03bd4210-2ed7-11eb-6d7a-13fc0b61e9db
  4. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:

    MasterSecurityGroupId

    Master Security Group ID

    WorkerSecurityGroupId

    Worker Security Group ID

    MasterInstanceProfile

    Master IAM Instance Profile

    WorkerInstanceProfile

    Worker IAM Instance Profile

CloudFormation template for security objects

You can use the following CloudFormation template to deploy the security objects that you need for your OKD cluster.

CloudFormation template for security objects

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for OpenShift Cluster Security Elements (Security Groups & IAM)
  3. Parameters:
  4. InfrastructureName:
  5. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  6. MaxLength: 27
  7. MinLength: 1
  8. ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  9. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
  10. Type: String
  11. VpcCidr:
  12. AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/(1[6-9]|2[0-4]))$
  13. ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/16-24.
  14. Default: 10.0.0.0/16
  15. Description: CIDR block for VPC.
  16. Type: String
  17. VpcId:
  18. Description: The VPC-scoped resources will belong to this VPC.
  19. Type: AWS::EC2::VPC::Id
  20. PrivateSubnets:
  21. Description: The internal subnets.
  22. Type: List<AWS::EC2::Subnet::Id>
  23. Metadata:
  24. AWS::CloudFormation::Interface:
  25. ParameterGroups:
  26. - Label:
  27. default: "Cluster Information"
  28. Parameters:
  29. - InfrastructureName
  30. - Label:
  31. default: "Network Configuration"
  32. Parameters:
  33. - VpcId
  34. - VpcCidr
  35. - PrivateSubnets
  36. ParameterLabels:
  37. InfrastructureName:
  38. default: "Infrastructure Name"
  39. VpcId:
  40. default: "VPC ID"
  41. VpcCidr:
  42. default: "VPC CIDR"
  43. PrivateSubnets:
  44. default: "Private Subnets"
  45. Resources:
  46. MasterSecurityGroup:
  47. Type: AWS::EC2::SecurityGroup
  48. Properties:
  49. GroupDescription: Cluster Master Security Group
  50. SecurityGroupIngress:
  51. - IpProtocol: icmp
  52. FromPort: 0
  53. ToPort: 0
  54. CidrIp: !Ref VpcCidr
  55. - IpProtocol: tcp
  56. FromPort: 22
  57. ToPort: 22
  58. CidrIp: !Ref VpcCidr
  59. - IpProtocol: tcp
  60. ToPort: 6443
  61. FromPort: 6443
  62. CidrIp: !Ref VpcCidr
  63. - IpProtocol: tcp
  64. FromPort: 22623
  65. ToPort: 22623
  66. CidrIp: !Ref VpcCidr
  67. VpcId: !Ref VpcId
  68. WorkerSecurityGroup:
  69. Type: AWS::EC2::SecurityGroup
  70. Properties:
  71. GroupDescription: Cluster Worker Security Group
  72. SecurityGroupIngress:
  73. - IpProtocol: icmp
  74. FromPort: 0
  75. ToPort: 0
  76. CidrIp: !Ref VpcCidr
  77. - IpProtocol: tcp
  78. FromPort: 22
  79. ToPort: 22
  80. CidrIp: !Ref VpcCidr
  81. VpcId: !Ref VpcId
  82. MasterIngressEtcd:
  83. Type: AWS::EC2::SecurityGroupIngress
  84. Properties:
  85. GroupId: !GetAtt MasterSecurityGroup.GroupId
  86. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  87. Description: etcd
  88. FromPort: 2379
  89. ToPort: 2380
  90. IpProtocol: tcp
  91. MasterIngressVxlan:
  92. Type: AWS::EC2::SecurityGroupIngress
  93. Properties:
  94. GroupId: !GetAtt MasterSecurityGroup.GroupId
  95. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  96. Description: Vxlan packets
  97. FromPort: 4789
  98. ToPort: 4789
  99. IpProtocol: udp
  100. MasterIngressWorkerVxlan:
  101. Type: AWS::EC2::SecurityGroupIngress
  102. Properties:
  103. GroupId: !GetAtt MasterSecurityGroup.GroupId
  104. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  105. Description: Vxlan packets
  106. FromPort: 4789
  107. ToPort: 4789
  108. IpProtocol: udp
  109. MasterIngressGeneve:
  110. Type: AWS::EC2::SecurityGroupIngress
  111. Properties:
  112. GroupId: !GetAtt MasterSecurityGroup.GroupId
  113. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  114. Description: Geneve packets
  115. FromPort: 6081
  116. ToPort: 6081
  117. IpProtocol: udp
  118. MasterIngressWorkerGeneve:
  119. Type: AWS::EC2::SecurityGroupIngress
  120. Properties:
  121. GroupId: !GetAtt MasterSecurityGroup.GroupId
  122. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  123. Description: Geneve packets
  124. FromPort: 6081
  125. ToPort: 6081
  126. IpProtocol: udp
  127. MasterIngressIpsecIke:
  128. Type: AWS::EC2::SecurityGroupIngress
  129. Properties:
  130. GroupId: !GetAtt MasterSecurityGroup.GroupId
  131. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  132. Description: IPsec IKE packets
  133. FromPort: 500
  134. ToPort: 500
  135. IpProtocol: udp
  136. MasterIngressIpsecNat:
  137. Type: AWS::EC2::SecurityGroupIngress
  138. Properties:
  139. GroupId: !GetAtt MasterSecurityGroup.GroupId
  140. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  141. Description: IPsec NAT-T packets
  142. FromPort: 4500
  143. ToPort: 4500
  144. IpProtocol: udp
  145. MasterIngressIpsecEsp:
  146. Type: AWS::EC2::SecurityGroupIngress
  147. Properties:
  148. GroupId: !GetAtt MasterSecurityGroup.GroupId
  149. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  150. Description: IPsec ESP packets
  151. IpProtocol: 50
  152. MasterIngressWorkerIpsecIke:
  153. Type: AWS::EC2::SecurityGroupIngress
  154. Properties:
  155. GroupId: !GetAtt MasterSecurityGroup.GroupId
  156. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  157. Description: IPsec IKE packets
  158. FromPort: 500
  159. ToPort: 500
  160. IpProtocol: udp
  161. MasterIngressWorkerIpsecNat:
  162. Type: AWS::EC2::SecurityGroupIngress
  163. Properties:
  164. GroupId: !GetAtt MasterSecurityGroup.GroupId
  165. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  166. Description: IPsec NAT-T packets
  167. FromPort: 4500
  168. ToPort: 4500
  169. IpProtocol: udp
  170. MasterIngressWorkerIpsecEsp:
  171. Type: AWS::EC2::SecurityGroupIngress
  172. Properties:
  173. GroupId: !GetAtt MasterSecurityGroup.GroupId
  174. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  175. Description: IPsec ESP packets
  176. IpProtocol: 50
  177. MasterIngressInternal:
  178. Type: AWS::EC2::SecurityGroupIngress
  179. Properties:
  180. GroupId: !GetAtt MasterSecurityGroup.GroupId
  181. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  182. Description: Internal cluster communication
  183. FromPort: 9000
  184. ToPort: 9999
  185. IpProtocol: tcp
  186. MasterIngressWorkerInternal:
  187. Type: AWS::EC2::SecurityGroupIngress
  188. Properties:
  189. GroupId: !GetAtt MasterSecurityGroup.GroupId
  190. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  191. Description: Internal cluster communication
  192. FromPort: 9000
  193. ToPort: 9999
  194. IpProtocol: tcp
  195. MasterIngressInternalUDP:
  196. Type: AWS::EC2::SecurityGroupIngress
  197. Properties:
  198. GroupId: !GetAtt MasterSecurityGroup.GroupId
  199. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  200. Description: Internal cluster communication
  201. FromPort: 9000
  202. ToPort: 9999
  203. IpProtocol: udp
  204. MasterIngressWorkerInternalUDP:
  205. Type: AWS::EC2::SecurityGroupIngress
  206. Properties:
  207. GroupId: !GetAtt MasterSecurityGroup.GroupId
  208. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  209. Description: Internal cluster communication
  210. FromPort: 9000
  211. ToPort: 9999
  212. IpProtocol: udp
  213. MasterIngressKube:
  214. Type: AWS::EC2::SecurityGroupIngress
  215. Properties:
  216. GroupId: !GetAtt MasterSecurityGroup.GroupId
  217. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  218. Description: Kubernetes kubelet, scheduler and controller manager
  219. FromPort: 10250
  220. ToPort: 10259
  221. IpProtocol: tcp
  222. MasterIngressWorkerKube:
  223. Type: AWS::EC2::SecurityGroupIngress
  224. Properties:
  225. GroupId: !GetAtt MasterSecurityGroup.GroupId
  226. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  227. Description: Kubernetes kubelet, scheduler and controller manager
  228. FromPort: 10250
  229. ToPort: 10259
  230. IpProtocol: tcp
  231. MasterIngressIngressServices:
  232. Type: AWS::EC2::SecurityGroupIngress
  233. Properties:
  234. GroupId: !GetAtt MasterSecurityGroup.GroupId
  235. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  236. Description: Kubernetes ingress services
  237. FromPort: 30000
  238. ToPort: 32767
  239. IpProtocol: tcp
  240. MasterIngressWorkerIngressServices:
  241. Type: AWS::EC2::SecurityGroupIngress
  242. Properties:
  243. GroupId: !GetAtt MasterSecurityGroup.GroupId
  244. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  245. Description: Kubernetes ingress services
  246. FromPort: 30000
  247. ToPort: 32767
  248. IpProtocol: tcp
  249. MasterIngressIngressServicesUDP:
  250. Type: AWS::EC2::SecurityGroupIngress
  251. Properties:
  252. GroupId: !GetAtt MasterSecurityGroup.GroupId
  253. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  254. Description: Kubernetes ingress services
  255. FromPort: 30000
  256. ToPort: 32767
  257. IpProtocol: udp
  258. MasterIngressWorkerIngressServicesUDP:
  259. Type: AWS::EC2::SecurityGroupIngress
  260. Properties:
  261. GroupId: !GetAtt MasterSecurityGroup.GroupId
  262. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  263. Description: Kubernetes ingress services
  264. FromPort: 30000
  265. ToPort: 32767
  266. IpProtocol: udp
  267. WorkerIngressVxlan:
  268. Type: AWS::EC2::SecurityGroupIngress
  269. Properties:
  270. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  271. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  272. Description: Vxlan packets
  273. FromPort: 4789
  274. ToPort: 4789
  275. IpProtocol: udp
  276. WorkerIngressMasterVxlan:
  277. Type: AWS::EC2::SecurityGroupIngress
  278. Properties:
  279. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  280. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  281. Description: Vxlan packets
  282. FromPort: 4789
  283. ToPort: 4789
  284. IpProtocol: udp
  285. WorkerIngressGeneve:
  286. Type: AWS::EC2::SecurityGroupIngress
  287. Properties:
  288. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  289. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  290. Description: Geneve packets
  291. FromPort: 6081
  292. ToPort: 6081
  293. IpProtocol: udp
  294. WorkerIngressMasterGeneve:
  295. Type: AWS::EC2::SecurityGroupIngress
  296. Properties:
  297. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  298. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  299. Description: Geneve packets
  300. FromPort: 6081
  301. ToPort: 6081
  302. IpProtocol: udp
  303. WorkerIngressIpsecIke:
  304. Type: AWS::EC2::SecurityGroupIngress
  305. Properties:
  306. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  307. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  308. Description: IPsec IKE packets
  309. FromPort: 500
  310. ToPort: 500
  311. IpProtocol: udp
  312. WorkerIngressIpsecNat:
  313. Type: AWS::EC2::SecurityGroupIngress
  314. Properties:
  315. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  316. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  317. Description: IPsec NAT-T packets
  318. FromPort: 4500
  319. ToPort: 4500
  320. IpProtocol: udp
  321. WorkerIngressIpsecEsp:
  322. Type: AWS::EC2::SecurityGroupIngress
  323. Properties:
  324. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  325. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  326. Description: IPsec ESP packets
  327. IpProtocol: 50
  328. WorkerIngressMasterIpsecIke:
  329. Type: AWS::EC2::SecurityGroupIngress
  330. Properties:
  331. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  332. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  333. Description: IPsec IKE packets
  334. FromPort: 500
  335. ToPort: 500
  336. IpProtocol: udp
  337. WorkerIngressMasterIpsecNat:
  338. Type: AWS::EC2::SecurityGroupIngress
  339. Properties:
  340. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  341. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  342. Description: IPsec NAT-T packets
  343. FromPort: 4500
  344. ToPort: 4500
  345. IpProtocol: udp
  346. WorkerIngressMasterIpsecEsp:
  347. Type: AWS::EC2::SecurityGroupIngress
  348. Properties:
  349. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  350. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  351. Description: IPsec ESP packets
  352. IpProtocol: 50
  353. WorkerIngressInternal:
  354. Type: AWS::EC2::SecurityGroupIngress
  355. Properties:
  356. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  357. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  358. Description: Internal cluster communication
  359. FromPort: 9000
  360. ToPort: 9999
  361. IpProtocol: tcp
  362. WorkerIngressMasterInternal:
  363. Type: AWS::EC2::SecurityGroupIngress
  364. Properties:
  365. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  366. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  367. Description: Internal cluster communication
  368. FromPort: 9000
  369. ToPort: 9999
  370. IpProtocol: tcp
  371. WorkerIngressInternalUDP:
  372. Type: AWS::EC2::SecurityGroupIngress
  373. Properties:
  374. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  375. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  376. Description: Internal cluster communication
  377. FromPort: 9000
  378. ToPort: 9999
  379. IpProtocol: udp
  380. WorkerIngressMasterInternalUDP:
  381. Type: AWS::EC2::SecurityGroupIngress
  382. Properties:
  383. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  384. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  385. Description: Internal cluster communication
  386. FromPort: 9000
  387. ToPort: 9999
  388. IpProtocol: udp
  389. WorkerIngressKube:
  390. Type: AWS::EC2::SecurityGroupIngress
  391. Properties:
  392. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  393. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  394. Description: Kubernetes secure kubelet port
  395. FromPort: 10250
  396. ToPort: 10250
  397. IpProtocol: tcp
  398. WorkerIngressWorkerKube:
  399. Type: AWS::EC2::SecurityGroupIngress
  400. Properties:
  401. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  402. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  403. Description: Internal Kubernetes communication
  404. FromPort: 10250
  405. ToPort: 10250
  406. IpProtocol: tcp
  407. WorkerIngressIngressServices:
  408. Type: AWS::EC2::SecurityGroupIngress
  409. Properties:
  410. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  411. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  412. Description: Kubernetes ingress services
  413. FromPort: 30000
  414. ToPort: 32767
  415. IpProtocol: tcp
  416. WorkerIngressMasterIngressServices:
  417. Type: AWS::EC2::SecurityGroupIngress
  418. Properties:
  419. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  420. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  421. Description: Kubernetes ingress services
  422. FromPort: 30000
  423. ToPort: 32767
  424. IpProtocol: tcp
  425. WorkerIngressIngressServicesUDP:
  426. Type: AWS::EC2::SecurityGroupIngress
  427. Properties:
  428. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  429. SourceSecurityGroupId: !GetAtt WorkerSecurityGroup.GroupId
  430. Description: Kubernetes ingress services
  431. FromPort: 30000
  432. ToPort: 32767
  433. IpProtocol: udp
  434. WorkerIngressMasterIngressServicesUDP:
  435. Type: AWS::EC2::SecurityGroupIngress
  436. Properties:
  437. GroupId: !GetAtt WorkerSecurityGroup.GroupId
  438. SourceSecurityGroupId: !GetAtt MasterSecurityGroup.GroupId
  439. Description: Kubernetes ingress services
  440. FromPort: 30000
  441. ToPort: 32767
  442. IpProtocol: udp
  443. MasterIamRole:
  444. Type: AWS::IAM::Role
  445. Properties:
  446. AssumeRolePolicyDocument:
  447. Version: "2012-10-17"
  448. Statement:
  449. - Effect: "Allow"
  450. Principal:
  451. Service:
  452. - "ec2.amazonaws.com"
  453. Action:
  454. - "sts:AssumeRole"
  455. Policies:
  456. - PolicyName: !Join ["-", [!Ref InfrastructureName, "master", "policy"]]
  457. PolicyDocument:
  458. Version: "2012-10-17"
  459. Statement:
  460. - Effect: "Allow"
  461. Action:
  462. - "ec2:AttachVolume"
  463. - "ec2:AuthorizeSecurityGroupIngress"
  464. - "ec2:CreateSecurityGroup"
  465. - "ec2:CreateTags"
  466. - "ec2:CreateVolume"
  467. - "ec2:DeleteSecurityGroup"
  468. - "ec2:DeleteVolume"
  469. - "ec2:Describe*"
  470. - "ec2:DetachVolume"
  471. - "ec2:ModifyInstanceAttribute"
  472. - "ec2:ModifyVolume"
  473. - "ec2:RevokeSecurityGroupIngress"
  474. - "elasticloadbalancing:AddTags"
  475. - "elasticloadbalancing:AttachLoadBalancerToSubnets"
  476. - "elasticloadbalancing:ApplySecurityGroupsToLoadBalancer"
  477. - "elasticloadbalancing:CreateListener"
  478. - "elasticloadbalancing:CreateLoadBalancer"
  479. - "elasticloadbalancing:CreateLoadBalancerPolicy"
  480. - "elasticloadbalancing:CreateLoadBalancerListeners"
  481. - "elasticloadbalancing:CreateTargetGroup"
  482. - "elasticloadbalancing:ConfigureHealthCheck"
  483. - "elasticloadbalancing:DeleteListener"
  484. - "elasticloadbalancing:DeleteLoadBalancer"
  485. - "elasticloadbalancing:DeleteLoadBalancerListeners"
  486. - "elasticloadbalancing:DeleteTargetGroup"
  487. - "elasticloadbalancing:DeregisterInstancesFromLoadBalancer"
  488. - "elasticloadbalancing:DeregisterTargets"
  489. - "elasticloadbalancing:Describe*"
  490. - "elasticloadbalancing:DetachLoadBalancerFromSubnets"
  491. - "elasticloadbalancing:ModifyListener"
  492. - "elasticloadbalancing:ModifyLoadBalancerAttributes"
  493. - "elasticloadbalancing:ModifyTargetGroup"
  494. - "elasticloadbalancing:ModifyTargetGroupAttributes"
  495. - "elasticloadbalancing:RegisterInstancesWithLoadBalancer"
  496. - "elasticloadbalancing:RegisterTargets"
  497. - "elasticloadbalancing:SetLoadBalancerPoliciesForBackendServer"
  498. - "elasticloadbalancing:SetLoadBalancerPoliciesOfListener"
  499. - "kms:DescribeKey"
  500. Resource: "*"
  501. MasterInstanceProfile:
  502. Type: "AWS::IAM::InstanceProfile"
  503. Properties:
  504. Roles:
  505. - Ref: "MasterIamRole"
  506. WorkerIamRole:
  507. Type: AWS::IAM::Role
  508. Properties:
  509. AssumeRolePolicyDocument:
  510. Version: "2012-10-17"
  511. Statement:
  512. - Effect: "Allow"
  513. Principal:
  514. Service:
  515. - "ec2.amazonaws.com"
  516. Action:
  517. - "sts:AssumeRole"
  518. Policies:
  519. - PolicyName: !Join ["-", [!Ref InfrastructureName, "worker", "policy"]]
  520. PolicyDocument:
  521. Version: "2012-10-17"
  522. Statement:
  523. - Effect: "Allow"
  524. Action:
  525. - "ec2:DescribeInstances"
  526. - "ec2:DescribeRegions"
  527. Resource: "*"
  528. WorkerInstanceProfile:
  529. Type: "AWS::IAM::InstanceProfile"
  530. Properties:
  531. Roles:
  532. - Ref: "WorkerIamRole"
  533. Outputs:
  534. MasterSecurityGroupId:
  535. Description: Master Security Group ID
  536. Value: !GetAtt MasterSecurityGroup.GroupId
  537. WorkerSecurityGroupId:
  538. Description: Worker Security Group ID
  539. Value: !GetAtt WorkerSecurityGroup.GroupId
  540. MasterInstanceProfile:
  541. Description: Master IAM Instance Profile
  542. Value: !Ref MasterInstanceProfile
  543. WorkerInstanceProfile:
  544. Description: Worker IAM Instance Profile
  545. Value: !Ref WorkerInstanceProfile

Accessing FCOS AMIs with stream metadata

In OKD, stream metadata provides standardized metadata about FCOS in the JSON format and injects the metadata into the cluster. Stream metadata is a stable format that supports multiple architectures and is intended to be self-documenting for maintaining automation.

You can use the coreos print-stream-json sub-command of openshift-install to access information about the boot images in the stream metadata format. This command provides a method for printing stream metadata in a scriptable, machine-readable format.

For user-provisioned installations, the openshift-install binary contains references to the version of FCOS boot images that are tested for use with OKD, such as the AWS AMI.

Procedure

To parse the stream metadata, use one of the following methods:

  • From a Go program, use the official stream-metadata-go library at https://github.com/coreos/stream-metadata-go. You can also view example code in the library.

  • From another programming language, such as Python or Ruby, use the JSON library of your preferred programming language.

  • From a command-line utility that handles JSON data, such as jq:

    • Print the current x86_64 AMI for an AWS region, such as us-west-1:

      For x86_64

      1. $ openshift-install coreos print-stream-json | jq -r '.architectures.x86_64.images.aws.regions["us-west-1"].image'

      Example output

      1. ami-0d3e625f84626bbda

      The output of this command is the AWS AMI ID for your designated architecture and the us-west-1 region. The AMI must belong to the same region as the cluster.

FCOS AMIs for the AWS infrastructure

Red Hat provides Fedora CoreOS (FCOS) AMIs that are valid for the various AWS regions and instance architectures that you can manually specify for your OKD nodes.

By importing your own AMI, you can also install to regions that do not have a published FCOS AMI.

Creating the bootstrap node in AWS

You must create the bootstrap node in Amazon Web Services (AWS) to use during OKD cluster initialization. You do this by:

  • Providing a location to serve the bootstrap.ign Ignition config file to your cluster. This file is located in your installation directory. The provided CloudFormation Template assumes that the Ignition config files for your cluster are served from an S3 bucket. If you choose to serve the files from another location, you must modify the templates.

  • Using the provided CloudFormation template and a custom parameter file to create a stack of AWS resources. The stack represents the bootstrap node that your OKD installation requires.

If you do not use the provided CloudFormation template to create your bootstrap node, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

  • You created and configured DNS, load balancers, and listeners in AWS.

  • You created the security groups and roles required for your cluster in AWS.

Procedure

  1. Create the bucket by running the following command:

    1. $ aws s3 mb s3://<cluster-name>-infra (1)
    1<cluster-name>-infra is the bucket name. When creating the install-config.yaml file, replace <cluster-name> with the name specified for the cluster.

    You must use a presigned URL for your S3 bucket, instead of the s3:// schema, if you are:

    • Deploying to a region that has endpoints that differ from the AWS SDK.

    • Deploying a proxy.

    • Providing your own custom endpoints.

  2. Upload the bootstrap.ign Ignition config file to the bucket by running the following command:

    1. $ aws s3 cp <installation_directory>/bootstrap.ign s3://<cluster-name>-infra/bootstrap.ign (1)
    1For <installation_directory>, specify the path to the directory that you stored the installation files in.
  3. Verify that the file uploaded by running the following command:

    1. $ aws s3 ls s3://<cluster-name>-infra/

    Example output

    1. 2019-04-03 16:15:16 314878 bootstrap.ign

    The bootstrap Ignition config file does contain secrets, like X.509 keys. The following steps provide basic security for the S3 bucket. To provide additional security, you can enable an S3 bucket policy to allow only certain users, such as the OpenShift IAM user, to access objects that the bucket contains. You can avoid S3 entirely and serve your bootstrap Ignition config file from any address that the bootstrap machine can reach.

  4. Create a JSON file that contains the parameter values that the template requires:

    1. [
    2. {
    3. "ParameterKey": "InfrastructureName", (1)
    4. "ParameterValue": "mycluster-<random_string>" (2)
    5. },
    6. {
    7. "ParameterKey": "RhcosAmi", (3)
    8. "ParameterValue": "ami-<random_string>" (4)
    9. },
    10. {
    11. "ParameterKey": "AllowedBootstrapSshCidr", (5)
    12. "ParameterValue": "0.0.0.0/0" (6)
    13. },
    14. {
    15. "ParameterKey": "PublicSubnet", (7)
    16. "ParameterValue": "subnet-<random_string>" (8)
    17. },
    18. {
    19. "ParameterKey": "MasterSecurityGroupId", (9)
    20. "ParameterValue": "sg-<random_string>" (10)
    21. },
    22. {
    23. "ParameterKey": "VpcId", (11)
    24. "ParameterValue": "vpc-<random_string>" (12)
    25. },
    26. {
    27. "ParameterKey": "BootstrapIgnitionLocation", (13)
    28. "ParameterValue": "s3://<bucket_name>/bootstrap.ign" (14)
    29. },
    30. {
    31. "ParameterKey": "AutoRegisterELB", (15)
    32. "ParameterValue": "yes" (16)
    33. },
    34. {
    35. "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (17)
    36. "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (18)
    37. },
    38. {
    39. "ParameterKey": "ExternalApiTargetGroupArn", (19)
    40. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (20)
    41. },
    42. {
    43. "ParameterKey": "InternalApiTargetGroupArn", (21)
    44. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (22)
    45. },
    46. {
    47. "ParameterKey": "InternalServiceTargetGroupArn", (23)
    48. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (24)
    49. }
    50. ]
    1The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
    2Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
    3Current Fedora CoreOS (FCOS) AMI to use for the bootstrap node based on your selected architecture.
    4Specify a valid AWS::EC2::Image::Id value.
    5CIDR block to allow SSH access to the bootstrap node.
    6Specify a CIDR block in the format x.x.x.x/16-24.
    7The public subnet that is associated with your VPC to launch the bootstrap node into.
    8Specify the PublicSubnetIds value from the output of the CloudFormation template for the VPC.
    9The master security group ID (for registering temporary rules)
    10Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
    11The VPC created resources will belong to.
    12Specify the VpcId value from the output of the CloudFormation template for the VPC.
    13Location to fetch bootstrap Ignition config file from.
    14Specify the S3 bucket and file name in the form s3://<bucket_name>/bootstrap.ign.
    15Whether or not to register a network load balancer (NLB).
    16Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
    17The ARN for NLB IP target registration lambda group.
    18Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    19The ARN for external API load balancer target group.
    20Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    21The ARN for internal API load balancer target group.
    22Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    23The ARN for internal service load balancer target group.
    24Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
  5. Copy the template from the CloudFormation template for the bootstrap machine section of this topic and save it as a YAML file on your computer. This template describes the bootstrap machine that your cluster requires.

  6. Optional: If you are deploying the cluster with a proxy, you must update the ignition in the template to add the ignition.config.proxy fields. Additionally, If you have added the Amazon EC2, Elastic Load Balancing, and S3 VPC endpoints to your VPC, you must add these endpoints to the noProxy field.

  7. Launch the CloudFormation template to create a stack of AWS resources that represent the bootstrap node:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml (2)
    3. --parameters file://<parameters>.json (3)
    4. --capabilities CAPABILITY_NAMED_IAM (4)
    1<name> is the name for the CloudFormation stack, such as cluster-bootstrap. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.
    4You must explicitly declare the CAPABILITY_NAMED_IAM capability because the provided template creates some AWS::IAM::Role and AWS::IAM::InstanceProfile resources.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-bootstrap/12944486-2add-11eb-9dee-12dace8e3a83
  8. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>

    After the StackStatus displays CREATE_COMPLETE, the output displays values for the following parameters. You must provide these parameter values to the other CloudFormation templates that you run to create your cluster:

    BootstrapInstanceId

    The bootstrap Instance ID.

    BootstrapPublicIp

    The bootstrap node public IP address.

    BootstrapPrivateIp

    The bootstrap node private IP address.

CloudFormation template for the bootstrap machine

You can use the following CloudFormation template to deploy the bootstrap machine that you need for your OKD cluster.

CloudFormation template for the bootstrap machine

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for OpenShift Cluster Bootstrap (EC2 Instance, Security Groups and IAM)
  3. Parameters:
  4. InfrastructureName:
  5. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  6. MaxLength: 27
  7. MinLength: 1
  8. ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  9. Description: A short, unique cluster ID used to tag cloud resources and identify items owned or used by the cluster.
  10. Type: String
  11. RhcosAmi:
  12. Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
  13. Type: AWS::EC2::Image::Id
  14. AllowedBootstrapSshCidr:
  15. AllowedPattern: ^(([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])\.){3}([0-9]|[1-9][0-9]|1[0-9]{2}|2[0-4][0-9]|25[0-5])(\/([0-9]|1[0-9]|2[0-9]|3[0-2]))$
  16. ConstraintDescription: CIDR block parameter must be in the form x.x.x.x/0-32.
  17. Default: 0.0.0.0/0
  18. Description: CIDR block to allow SSH access to the bootstrap node.
  19. Type: String
  20. PublicSubnet:
  21. Description: The public subnet to launch the bootstrap node into.
  22. Type: AWS::EC2::Subnet::Id
  23. MasterSecurityGroupId:
  24. Description: The master security group ID for registering temporary rules.
  25. Type: AWS::EC2::SecurityGroup::Id
  26. VpcId:
  27. Description: The VPC-scoped resources will belong to this VPC.
  28. Type: AWS::EC2::VPC::Id
  29. BootstrapIgnitionLocation:
  30. Default: s3://my-s3-bucket/bootstrap.ign
  31. Description: Ignition config file location.
  32. Type: String
  33. AutoRegisterELB:
  34. Default: "yes"
  35. AllowedValues:
  36. - "yes"
  37. - "no"
  38. Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
  39. Type: String
  40. RegisterNlbIpTargetsLambdaArn:
  41. Description: ARN for NLB IP target registration lambda.
  42. Type: String
  43. ExternalApiTargetGroupArn:
  44. Description: ARN for external API load balancer target group.
  45. Type: String
  46. InternalApiTargetGroupArn:
  47. Description: ARN for internal API load balancer target group.
  48. Type: String
  49. InternalServiceTargetGroupArn:
  50. Description: ARN for internal service load balancer target group.
  51. Type: String
  52. BootstrapInstanceType:
  53. Description: Instance type for the bootstrap EC2 instance
  54. Default: "i3.large"
  55. Type: String
  56. Metadata:
  57. AWS::CloudFormation::Interface:
  58. ParameterGroups:
  59. - Label:
  60. default: "Cluster Information"
  61. Parameters:
  62. - InfrastructureName
  63. - Label:
  64. default: "Host Information"
  65. Parameters:
  66. - RhcosAmi
  67. - BootstrapIgnitionLocation
  68. - MasterSecurityGroupId
  69. - Label:
  70. default: "Network Configuration"
  71. Parameters:
  72. - VpcId
  73. - AllowedBootstrapSshCidr
  74. - PublicSubnet
  75. - Label:
  76. default: "Load Balancer Automation"
  77. Parameters:
  78. - AutoRegisterELB
  79. - RegisterNlbIpTargetsLambdaArn
  80. - ExternalApiTargetGroupArn
  81. - InternalApiTargetGroupArn
  82. - InternalServiceTargetGroupArn
  83. ParameterLabels:
  84. InfrastructureName:
  85. default: "Infrastructure Name"
  86. VpcId:
  87. default: "VPC ID"
  88. AllowedBootstrapSshCidr:
  89. default: "Allowed SSH Source"
  90. PublicSubnet:
  91. default: "Public Subnet"
  92. RhcosAmi:
  93. default: "Red Hat Enterprise Linux CoreOS AMI ID"
  94. BootstrapIgnitionLocation:
  95. default: "Bootstrap Ignition Source"
  96. MasterSecurityGroupId:
  97. default: "Master Security Group ID"
  98. AutoRegisterELB:
  99. default: "Use Provided ELB Automation"
  100. Conditions:
  101. DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]
  102. Resources:
  103. BootstrapIamRole:
  104. Type: AWS::IAM::Role
  105. Properties:
  106. AssumeRolePolicyDocument:
  107. Version: "2012-10-17"
  108. Statement:
  109. - Effect: "Allow"
  110. Principal:
  111. Service:
  112. - "ec2.amazonaws.com"
  113. Action:
  114. - "sts:AssumeRole"
  115. Path: "/"
  116. Policies:
  117. - PolicyName: !Join ["-", [!Ref InfrastructureName, "bootstrap", "policy"]]
  118. PolicyDocument:
  119. Version: "2012-10-17"
  120. Statement:
  121. - Effect: "Allow"
  122. Action: "ec2:Describe*"
  123. Resource: "*"
  124. - Effect: "Allow"
  125. Action: "ec2:AttachVolume"
  126. Resource: "*"
  127. - Effect: "Allow"
  128. Action: "ec2:DetachVolume"
  129. Resource: "*"
  130. - Effect: "Allow"
  131. Action: "s3:GetObject"
  132. Resource: "*"
  133. BootstrapInstanceProfile:
  134. Type: "AWS::IAM::InstanceProfile"
  135. Properties:
  136. Path: "/"
  137. Roles:
  138. - Ref: "BootstrapIamRole"
  139. BootstrapSecurityGroup:
  140. Type: AWS::EC2::SecurityGroup
  141. Properties:
  142. GroupDescription: Cluster Bootstrap Security Group
  143. SecurityGroupIngress:
  144. - IpProtocol: tcp
  145. FromPort: 22
  146. ToPort: 22
  147. CidrIp: !Ref AllowedBootstrapSshCidr
  148. - IpProtocol: tcp
  149. ToPort: 19531
  150. FromPort: 19531
  151. CidrIp: 0.0.0.0/0
  152. VpcId: !Ref VpcId
  153. BootstrapInstance:
  154. Type: AWS::EC2::Instance
  155. Properties:
  156. ImageId: !Ref RhcosAmi
  157. IamInstanceProfile: !Ref BootstrapInstanceProfile
  158. InstanceType: !Ref BootstrapInstanceType
  159. NetworkInterfaces:
  160. - AssociatePublicIpAddress: "true"
  161. DeviceIndex: "0"
  162. GroupSet:
  163. - !Ref "BootstrapSecurityGroup"
  164. - !Ref "MasterSecurityGroupId"
  165. SubnetId: !Ref "PublicSubnet"
  166. UserData:
  167. Fn::Base64: !Sub
  168. - '{"ignition":{"config":{"replace":{"source":"${S3Loc}"}},"version":"3.1.0"}}'
  169. - {
  170. S3Loc: !Ref BootstrapIgnitionLocation
  171. }
  172. RegisterBootstrapApiTarget:
  173. Condition: DoRegistration
  174. Type: Custom::NLBRegister
  175. Properties:
  176. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  177. TargetArn: !Ref ExternalApiTargetGroupArn
  178. TargetIp: !GetAtt BootstrapInstance.PrivateIp
  179. RegisterBootstrapInternalApiTarget:
  180. Condition: DoRegistration
  181. Type: Custom::NLBRegister
  182. Properties:
  183. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  184. TargetArn: !Ref InternalApiTargetGroupArn
  185. TargetIp: !GetAtt BootstrapInstance.PrivateIp
  186. RegisterBootstrapInternalServiceTarget:
  187. Condition: DoRegistration
  188. Type: Custom::NLBRegister
  189. Properties:
  190. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  191. TargetArn: !Ref InternalServiceTargetGroupArn
  192. TargetIp: !GetAtt BootstrapInstance.PrivateIp
  193. Outputs:
  194. BootstrapInstanceId:
  195. Description: Bootstrap Instance ID.
  196. Value: !Ref BootstrapInstance
  197. BootstrapPublicIp:
  198. Description: The bootstrap node public IP address.
  199. Value: !GetAtt BootstrapInstance.PublicIp
  200. BootstrapPrivateIp:
  201. Description: The bootstrap node private IP address.
  202. Value: !GetAtt BootstrapInstance.PrivateIp

Additional resources

Creating the control plane machines in AWS

You must create the control plane machines in Amazon Web Services (AWS) that your cluster will use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent the control plane nodes.

The CloudFormation template creates a stack that represents three control plane nodes.

If you do not use the provided CloudFormation template to create your control plane nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

  • You created and configured DNS, load balancers, and listeners in AWS.

  • You created the security groups and roles required for your cluster in AWS.

  • You created the bootstrap machine.

Procedure

  1. Create a JSON file that contains the parameter values that the template requires:

    1. [
    2. {
    3. "ParameterKey": "InfrastructureName", (1)
    4. "ParameterValue": "mycluster-<random_string>" (2)
    5. },
    6. {
    7. "ParameterKey": "RhcosAmi", (3)
    8. "ParameterValue": "ami-<random_string>" (4)
    9. },
    10. {
    11. "ParameterKey": "AutoRegisterDNS", (5)
    12. "ParameterValue": "yes" (6)
    13. },
    14. {
    15. "ParameterKey": "PrivateHostedZoneId", (7)
    16. "ParameterValue": "<random_string>" (8)
    17. },
    18. {
    19. "ParameterKey": "PrivateHostedZoneName", (9)
    20. "ParameterValue": "mycluster.example.com" (10)
    21. },
    22. {
    23. "ParameterKey": "Master0Subnet", (11)
    24. "ParameterValue": "subnet-<random_string>" (12)
    25. },
    26. {
    27. "ParameterKey": "Master1Subnet", (11)
    28. "ParameterValue": "subnet-<random_string>" (12)
    29. },
    30. {
    31. "ParameterKey": "Master2Subnet", (11)
    32. "ParameterValue": "subnet-<random_string>" (12)
    33. },
    34. {
    35. "ParameterKey": "MasterSecurityGroupId", (13)
    36. "ParameterValue": "sg-<random_string>" (14)
    37. },
    38. {
    39. "ParameterKey": "IgnitionLocation", (15)
    40. "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/master" (16)
    41. },
    42. {
    43. "ParameterKey": "CertificateAuthorities", (17)
    44. "ParameterValue": "data:text/plain;charset=utf-8;base64,ABC...xYz==" (18)
    45. },
    46. {
    47. "ParameterKey": "MasterInstanceProfileName", (19)
    48. "ParameterValue": "<roles_stack>-MasterInstanceProfile-<random_string>" (20)
    49. },
    50. {
    51. "ParameterKey": "MasterInstanceType", (21)
    52. "ParameterValue": "" (22)
    53. },
    54. {
    55. "ParameterKey": "AutoRegisterELB", (23)
    56. "ParameterValue": "yes" (24)
    57. },
    58. {
    59. "ParameterKey": "RegisterNlbIpTargetsLambdaArn", (25)
    60. "ParameterValue": "arn:aws:lambda:<aws_region>:<account_number>:function:<dns_stack_name>-RegisterNlbIpTargets-<random_string>" (26)
    61. },
    62. {
    63. "ParameterKey": "ExternalApiTargetGroupArn", (27)
    64. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Exter-<random_string>" (28)
    65. },
    66. {
    67. "ParameterKey": "InternalApiTargetGroupArn", (29)
    68. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (30)
    69. },
    70. {
    71. "ParameterKey": "InternalServiceTargetGroupArn", (31)
    72. "ParameterValue": "arn:aws:elasticloadbalancing:<aws_region>:<account_number>:targetgroup/<dns_stack_name>-Inter-<random_string>" (32)
    73. }
    74. ]
    1The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
    2Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
    3Current Fedora CoreOS (FCOS) AMI to use for the control plane machines based on your selected architecture.
    4Specify an AWS::EC2::Image::Id value.
    5Whether or not to perform DNS etcd registration.
    6Specify yes or no. If you specify yes, you must provide hosted zone information.
    7The Route 53 private zone ID to register the etcd targets with.
    8Specify the PrivateHostedZoneId value from the output of the CloudFormation template for DNS and load balancing.
    9The Route 53 zone to register the targets with.
    10Specify <cluster_name>.<domain_name> where <domain_name> is the Route 53 base domain that you used when you generated install-config.yaml file for the cluster. Do not include the trailing period (.) that is displayed in the AWS console.
    11A subnet, preferably private, to launch the control plane machines on.
    12Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
    13The master security group ID to associate with control plane nodes.
    14Specify the MasterSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
    15The location to fetch control plane Ignition config file from.
    16Specify the generated Ignition config file location, https://api-int.<cluster_name>.<domain_name>:22623/config/master.
    17The base64 encoded certificate authority string to use.
    18Specify the value from the master.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
    19The IAM profile to associate with control plane nodes.
    20Specify the MasterInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
    21The type of AWS instance to use for the control plane machines based on your selected architecture.
    22The instance type value corresponds to the minimum resource requirements for control plane machines. For example m6i.xlarge is a type for AMD64
    23Whether or not to register a network load balancer (NLB).
    24Specify yes or no. If you specify yes, you must provide a Lambda Amazon Resource Name (ARN) value.
    25The ARN for NLB IP target registration lambda group.
    26Specify the RegisterNlbIpTargetsLambda value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    27The ARN for external API load balancer target group.
    28Specify the ExternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    29The ARN for internal API load balancer target group.
    30Specify the InternalApiTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
    31The ARN for internal service load balancer target group.
    32Specify the InternalServiceTargetGroupArn value from the output of the CloudFormation template for DNS and load balancing. Use arn:aws-us-gov if deploying the cluster to an AWS GovCloud region.
  2. Copy the template from the CloudFormation template for control plane machines section of this topic and save it as a YAML file on your computer. This template describes the control plane machines that your cluster requires.

  3. If you specified an m5 instance type as the value for MasterInstanceType, add that instance type to the MasterInstanceType.AllowedValues parameter in the CloudFormation template.

  4. Launch the CloudFormation template to create a stack of AWS resources that represent the control plane nodes:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml (2)
    3. --parameters file://<parameters>.json (3)
    1<name> is the name for the CloudFormation stack, such as cluster-control-plane. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-control-plane/21c7e2b0-2ee2-11eb-c6f6-0aa34627df4b

    The CloudFormation template creates a stack that represents three control plane nodes.

  5. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>

CloudFormation template for control plane machines

You can use the following CloudFormation template to deploy the control plane machines that you need for your OKD cluster.

CloudFormation template for control plane machines

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for OpenShift Cluster Node Launch (EC2 master instances)
  3. Parameters:
  4. InfrastructureName:
  5. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  6. MaxLength: 27
  7. MinLength: 1
  8. ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  9. Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
  10. Type: String
  11. RhcosAmi:
  12. Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
  13. Type: AWS::EC2::Image::Id
  14. AutoRegisterDNS:
  15. Default: ""
  16. Description: unused
  17. Type: String
  18. PrivateHostedZoneId:
  19. Default: ""
  20. Description: unused
  21. Type: String
  22. PrivateHostedZoneName:
  23. Default: ""
  24. Description: unused
  25. Type: String
  26. Master0Subnet:
  27. Description: The subnets, recommend private, to launch the master nodes into.
  28. Type: AWS::EC2::Subnet::Id
  29. Master1Subnet:
  30. Description: The subnets, recommend private, to launch the master nodes into.
  31. Type: AWS::EC2::Subnet::Id
  32. Master2Subnet:
  33. Description: The subnets, recommend private, to launch the master nodes into.
  34. Type: AWS::EC2::Subnet::Id
  35. MasterSecurityGroupId:
  36. Description: The master security group ID to associate with master nodes.
  37. Type: AWS::EC2::SecurityGroup::Id
  38. IgnitionLocation:
  39. Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/master
  40. Description: Ignition config file location.
  41. Type: String
  42. CertificateAuthorities:
  43. Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
  44. Description: Base64 encoded certificate authority string to use.
  45. Type: String
  46. MasterInstanceProfileName:
  47. Description: IAM profile to associate with master nodes.
  48. Type: String
  49. MasterInstanceType:
  50. Default: m5.xlarge
  51. Type: String
  52. AutoRegisterELB:
  53. Default: "yes"
  54. AllowedValues:
  55. - "yes"
  56. - "no"
  57. Description: Do you want to invoke NLB registration, which requires a Lambda ARN parameter?
  58. Type: String
  59. RegisterNlbIpTargetsLambdaArn:
  60. Description: ARN for NLB IP target registration lambda. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
  61. Type: String
  62. ExternalApiTargetGroupArn:
  63. Description: ARN for external API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
  64. Type: String
  65. InternalApiTargetGroupArn:
  66. Description: ARN for internal API load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
  67. Type: String
  68. InternalServiceTargetGroupArn:
  69. Description: ARN for internal service load balancer target group. Supply the value from the cluster infrastructure or select "no" for AutoRegisterELB.
  70. Type: String
  71. Metadata:
  72. AWS::CloudFormation::Interface:
  73. ParameterGroups:
  74. - Label:
  75. default: "Cluster Information"
  76. Parameters:
  77. - InfrastructureName
  78. - Label:
  79. default: "Host Information"
  80. Parameters:
  81. - MasterInstanceType
  82. - RhcosAmi
  83. - IgnitionLocation
  84. - CertificateAuthorities
  85. - MasterSecurityGroupId
  86. - MasterInstanceProfileName
  87. - Label:
  88. default: "Network Configuration"
  89. Parameters:
  90. - VpcId
  91. - AllowedBootstrapSshCidr
  92. - Master0Subnet
  93. - Master1Subnet
  94. - Master2Subnet
  95. - Label:
  96. default: "Load Balancer Automation"
  97. Parameters:
  98. - AutoRegisterELB
  99. - RegisterNlbIpTargetsLambdaArn
  100. - ExternalApiTargetGroupArn
  101. - InternalApiTargetGroupArn
  102. - InternalServiceTargetGroupArn
  103. ParameterLabels:
  104. InfrastructureName:
  105. default: "Infrastructure Name"
  106. VpcId:
  107. default: "VPC ID"
  108. Master0Subnet:
  109. default: "Master-0 Subnet"
  110. Master1Subnet:
  111. default: "Master-1 Subnet"
  112. Master2Subnet:
  113. default: "Master-2 Subnet"
  114. MasterInstanceType:
  115. default: "Master Instance Type"
  116. MasterInstanceProfileName:
  117. default: "Master Instance Profile Name"
  118. RhcosAmi:
  119. default: "Red Hat Enterprise Linux CoreOS AMI ID"
  120. BootstrapIgnitionLocation:
  121. default: "Master Ignition Source"
  122. CertificateAuthorities:
  123. default: "Ignition CA String"
  124. MasterSecurityGroupId:
  125. default: "Master Security Group ID"
  126. AutoRegisterELB:
  127. default: "Use Provided ELB Automation"
  128. Conditions:
  129. DoRegistration: !Equals ["yes", !Ref AutoRegisterELB]
  130. Resources:
  131. Master0:
  132. Type: AWS::EC2::Instance
  133. Properties:
  134. ImageId: !Ref RhcosAmi
  135. BlockDeviceMappings:
  136. - DeviceName: /dev/xvda
  137. Ebs:
  138. VolumeSize: "120"
  139. VolumeType: "gp2"
  140. IamInstanceProfile: !Ref MasterInstanceProfileName
  141. InstanceType: !Ref MasterInstanceType
  142. NetworkInterfaces:
  143. - AssociatePublicIpAddress: "false"
  144. DeviceIndex: "0"
  145. GroupSet:
  146. - !Ref "MasterSecurityGroupId"
  147. SubnetId: !Ref "Master0Subnet"
  148. UserData:
  149. Fn::Base64: !Sub
  150. - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
  151. - {
  152. SOURCE: !Ref IgnitionLocation,
  153. CA_BUNDLE: !Ref CertificateAuthorities,
  154. }
  155. Tags:
  156. - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
  157. Value: "shared"
  158. RegisterMaster0:
  159. Condition: DoRegistration
  160. Type: Custom::NLBRegister
  161. Properties:
  162. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  163. TargetArn: !Ref ExternalApiTargetGroupArn
  164. TargetIp: !GetAtt Master0.PrivateIp
  165. RegisterMaster0InternalApiTarget:
  166. Condition: DoRegistration
  167. Type: Custom::NLBRegister
  168. Properties:
  169. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  170. TargetArn: !Ref InternalApiTargetGroupArn
  171. TargetIp: !GetAtt Master0.PrivateIp
  172. RegisterMaster0InternalServiceTarget:
  173. Condition: DoRegistration
  174. Type: Custom::NLBRegister
  175. Properties:
  176. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  177. TargetArn: !Ref InternalServiceTargetGroupArn
  178. TargetIp: !GetAtt Master0.PrivateIp
  179. Master1:
  180. Type: AWS::EC2::Instance
  181. Properties:
  182. ImageId: !Ref RhcosAmi
  183. BlockDeviceMappings:
  184. - DeviceName: /dev/xvda
  185. Ebs:
  186. VolumeSize: "120"
  187. VolumeType: "gp2"
  188. IamInstanceProfile: !Ref MasterInstanceProfileName
  189. InstanceType: !Ref MasterInstanceType
  190. NetworkInterfaces:
  191. - AssociatePublicIpAddress: "false"
  192. DeviceIndex: "0"
  193. GroupSet:
  194. - !Ref "MasterSecurityGroupId"
  195. SubnetId: !Ref "Master1Subnet"
  196. UserData:
  197. Fn::Base64: !Sub
  198. - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
  199. - {
  200. SOURCE: !Ref IgnitionLocation,
  201. CA_BUNDLE: !Ref CertificateAuthorities,
  202. }
  203. Tags:
  204. - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
  205. Value: "shared"
  206. RegisterMaster1:
  207. Condition: DoRegistration
  208. Type: Custom::NLBRegister
  209. Properties:
  210. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  211. TargetArn: !Ref ExternalApiTargetGroupArn
  212. TargetIp: !GetAtt Master1.PrivateIp
  213. RegisterMaster1InternalApiTarget:
  214. Condition: DoRegistration
  215. Type: Custom::NLBRegister
  216. Properties:
  217. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  218. TargetArn: !Ref InternalApiTargetGroupArn
  219. TargetIp: !GetAtt Master1.PrivateIp
  220. RegisterMaster1InternalServiceTarget:
  221. Condition: DoRegistration
  222. Type: Custom::NLBRegister
  223. Properties:
  224. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  225. TargetArn: !Ref InternalServiceTargetGroupArn
  226. TargetIp: !GetAtt Master1.PrivateIp
  227. Master2:
  228. Type: AWS::EC2::Instance
  229. Properties:
  230. ImageId: !Ref RhcosAmi
  231. BlockDeviceMappings:
  232. - DeviceName: /dev/xvda
  233. Ebs:
  234. VolumeSize: "120"
  235. VolumeType: "gp2"
  236. IamInstanceProfile: !Ref MasterInstanceProfileName
  237. InstanceType: !Ref MasterInstanceType
  238. NetworkInterfaces:
  239. - AssociatePublicIpAddress: "false"
  240. DeviceIndex: "0"
  241. GroupSet:
  242. - !Ref "MasterSecurityGroupId"
  243. SubnetId: !Ref "Master2Subnet"
  244. UserData:
  245. Fn::Base64: !Sub
  246. - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
  247. - {
  248. SOURCE: !Ref IgnitionLocation,
  249. CA_BUNDLE: !Ref CertificateAuthorities,
  250. }
  251. Tags:
  252. - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
  253. Value: "shared"
  254. RegisterMaster2:
  255. Condition: DoRegistration
  256. Type: Custom::NLBRegister
  257. Properties:
  258. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  259. TargetArn: !Ref ExternalApiTargetGroupArn
  260. TargetIp: !GetAtt Master2.PrivateIp
  261. RegisterMaster2InternalApiTarget:
  262. Condition: DoRegistration
  263. Type: Custom::NLBRegister
  264. Properties:
  265. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  266. TargetArn: !Ref InternalApiTargetGroupArn
  267. TargetIp: !GetAtt Master2.PrivateIp
  268. RegisterMaster2InternalServiceTarget:
  269. Condition: DoRegistration
  270. Type: Custom::NLBRegister
  271. Properties:
  272. ServiceToken: !Ref RegisterNlbIpTargetsLambdaArn
  273. TargetArn: !Ref InternalServiceTargetGroupArn
  274. TargetIp: !GetAtt Master2.PrivateIp
  275. Outputs:
  276. PrivateIPs:
  277. Description: The control-plane node private IP addresses.
  278. Value:
  279. !Join [
  280. ",",
  281. [!GetAtt Master0.PrivateIp, !GetAtt Master1.PrivateIp, !GetAtt Master2.PrivateIp]
  282. ]

Creating the worker nodes in AWS

You can create worker nodes in Amazon Web Services (AWS) for your cluster to use.

You can use the provided CloudFormation template and a custom parameter file to create a stack of AWS resources that represent a worker node.

The CloudFormation template creates a stack that represents one worker node. You must create a stack for each worker node.

If you do not use the provided CloudFormation template to create your worker nodes, you must review the provided information and manually create the infrastructure. If your cluster does not initialize correctly, you might have to contact Red Hat support with your installation logs.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

  • You created and configured DNS, load balancers, and listeners in AWS.

  • You created the security groups and roles required for your cluster in AWS.

  • You created the bootstrap machine.

  • You created the control plane machines.

Procedure

  1. Create a JSON file that contains the parameter values that the CloudFormation template requires:

    1. [
    2. {
    3. "ParameterKey": "InfrastructureName", (1)
    4. "ParameterValue": "mycluster-<random_string>" (2)
    5. },
    6. {
    7. "ParameterKey": "RhcosAmi", (3)
    8. "ParameterValue": "ami-<random_string>" (4)
    9. },
    10. {
    11. "ParameterKey": "Subnet", (5)
    12. "ParameterValue": "subnet-<random_string>" (6)
    13. },
    14. {
    15. "ParameterKey": "WorkerSecurityGroupId", (7)
    16. "ParameterValue": "sg-<random_string>" (8)
    17. },
    18. {
    19. "ParameterKey": "IgnitionLocation", (9)
    20. "ParameterValue": "https://api-int.<cluster_name>.<domain_name>:22623/config/worker" (10)
    21. },
    22. {
    23. "ParameterKey": "CertificateAuthorities", (11)
    24. "ParameterValue": "" (12)
    25. },
    26. {
    27. "ParameterKey": "WorkerInstanceProfileName", (13)
    28. "ParameterValue": "" (14)
    29. },
    30. {
    31. "ParameterKey": "WorkerInstanceType", (15)
    32. "ParameterValue": "" (16)
    33. }
    34. ]
    1The name for your cluster infrastructure that is encoded in your Ignition config files for the cluster.
    2Specify the infrastructure name that you extracted from the Ignition config file metadata, which has the format <cluster-name>-<random-string>.
    3Current Fedora CoreOS (FCOS) AMI to use for the worker nodes based on your selected architecture.
    4Specify an AWS::EC2::Image::Id value.
    5A subnet, preferably private, to start the worker nodes on.
    6Specify a subnet from the PrivateSubnets value from the output of the CloudFormation template for DNS and load balancing.
    7The worker security group ID to associate with worker nodes.
    8Specify the WorkerSecurityGroupId value from the output of the CloudFormation template for the security group and roles.
    9The location to fetch the bootstrap Ignition config file from.
    10Specify the generated Ignition config location, https://api-int.<cluster_name>.<domain_name>:22623/config/worker.
    11Base64 encoded certificate authority string to use.
    12Specify the value from the worker.ign file that is in the installation directory. This value is the long string with the format data:text/plain;charset=utf-8;base64,ABC…​xYz==.
    13The IAM profile to associate with worker nodes.
    14Specify the WorkerInstanceProfile parameter value from the output of the CloudFormation template for the security group and roles.
    15The type of AWS instance to use for the compute machines based on your selected architecture.
    16The instance type value corresponds to the minimum resource requirements for compute machines. For example m6i.large is a type for AMD64
  2. Copy the template from the CloudFormation template for worker machines section of this topic and save it as a YAML file on your computer. This template describes the networking objects and load balancers that your cluster requires.

  3. Optional: If you specified an m5 instance type as the value for WorkerInstanceType, add that instance type to the WorkerInstanceType.AllowedValues parameter in the CloudFormation template.

  4. Optional: If you are deploying with an AWS Marketplace image, update the Worker0.type.properties.ImageID parameter with the AMI ID that you obtained from your subscription.

  5. Use the CloudFormation template to create a stack of AWS resources that represent a worker node:

    You must enter the command on a single line.

    1. $ aws cloudformation create-stack --stack-name <name> (1)
    2. --template-body file://<template>.yaml \ (2)
    3. --parameters file://<parameters>.json (3)
    1<name> is the name for the CloudFormation stack, such as cluster-worker-1. You need the name of this stack if you remove the cluster.
    2<template> is the relative path to and name of the CloudFormation template YAML file that you saved.
    3<parameters> is the relative path to and name of the CloudFormation parameters JSON file.

    Example output

    1. arn:aws:cloudformation:us-east-1:269333783861:stack/cluster-worker-1/729ee301-1c2a-11eb-348f-sd9888c65b59

    The CloudFormation template creates a stack that represents one worker node.

  6. Confirm that the template components exist:

    1. $ aws cloudformation describe-stacks --stack-name <name>
  7. Continue to create worker stacks until you have created enough worker machines for your cluster. You can create additional worker stacks by referencing the same template and parameter files and specifying a different stack name.

    You must create at least two worker machines, so you must create at least two stacks that use this CloudFormation template.

CloudFormation template for worker machines

You can use the following CloudFormation template to deploy the worker machines that you need for your OKD cluster.

CloudFormation template for worker machines

  1. AWSTemplateFormatVersion: 2010-09-09
  2. Description: Template for OpenShift Cluster Node Launch (EC2 worker instance)
  3. Parameters:
  4. InfrastructureName:
  5. AllowedPattern: ^([a-zA-Z][a-zA-Z0-9\-]{0,26})$
  6. MaxLength: 27
  7. MinLength: 1
  8. ConstraintDescription: Infrastructure name must be alphanumeric, start with a letter, and have a maximum of 27 characters.
  9. Description: A short, unique cluster ID used to tag nodes for the kubelet cloud provider.
  10. Type: String
  11. RhcosAmi:
  12. Description: Current Red Hat Enterprise Linux CoreOS AMI to use for bootstrap.
  13. Type: AWS::EC2::Image::Id
  14. Subnet:
  15. Description: The subnets, recommend private, to launch the master nodes into.
  16. Type: AWS::EC2::Subnet::Id
  17. WorkerSecurityGroupId:
  18. Description: The master security group ID to associate with master nodes.
  19. Type: AWS::EC2::SecurityGroup::Id
  20. IgnitionLocation:
  21. Default: https://api-int.$CLUSTER_NAME.$DOMAIN:22623/config/worker
  22. Description: Ignition config file location.
  23. Type: String
  24. CertificateAuthorities:
  25. Default: data:text/plain;charset=utf-8;base64,ABC...xYz==
  26. Description: Base64 encoded certificate authority string to use.
  27. Type: String
  28. WorkerInstanceProfileName:
  29. Description: IAM profile to associate with master nodes.
  30. Type: String
  31. WorkerInstanceType:
  32. Default: m5.large
  33. Type: String
  34. Metadata:
  35. AWS::CloudFormation::Interface:
  36. ParameterGroups:
  37. - Label:
  38. default: "Cluster Information"
  39. Parameters:
  40. - InfrastructureName
  41. - Label:
  42. default: "Host Information"
  43. Parameters:
  44. - WorkerInstanceType
  45. - RhcosAmi
  46. - IgnitionLocation
  47. - CertificateAuthorities
  48. - WorkerSecurityGroupId
  49. - WorkerInstanceProfileName
  50. - Label:
  51. default: "Network Configuration"
  52. Parameters:
  53. - Subnet
  54. ParameterLabels:
  55. Subnet:
  56. default: "Subnet"
  57. InfrastructureName:
  58. default: "Infrastructure Name"
  59. WorkerInstanceType:
  60. default: "Worker Instance Type"
  61. WorkerInstanceProfileName:
  62. default: "Worker Instance Profile Name"
  63. RhcosAmi:
  64. default: "Red Hat Enterprise Linux CoreOS AMI ID"
  65. IgnitionLocation:
  66. default: "Worker Ignition Source"
  67. CertificateAuthorities:
  68. default: "Ignition CA String"
  69. WorkerSecurityGroupId:
  70. default: "Worker Security Group ID"
  71. Resources:
  72. Worker0:
  73. Type: AWS::EC2::Instance
  74. Properties:
  75. ImageId: !Ref RhcosAmi
  76. BlockDeviceMappings:
  77. - DeviceName: /dev/xvda
  78. Ebs:
  79. VolumeSize: "120"
  80. VolumeType: "gp2"
  81. IamInstanceProfile: !Ref WorkerInstanceProfileName
  82. InstanceType: !Ref WorkerInstanceType
  83. NetworkInterfaces:
  84. - AssociatePublicIpAddress: "false"
  85. DeviceIndex: "0"
  86. GroupSet:
  87. - !Ref "WorkerSecurityGroupId"
  88. SubnetId: !Ref "Subnet"
  89. UserData:
  90. Fn::Base64: !Sub
  91. - '{"ignition":{"config":{"merge":[{"source":"${SOURCE}"}]},"security":{"tls":{"certificateAuthorities":[{"source":"${CA_BUNDLE}"}]}},"version":"3.1.0"}}'
  92. - {
  93. SOURCE: !Ref IgnitionLocation,
  94. CA_BUNDLE: !Ref CertificateAuthorities,
  95. }
  96. Tags:
  97. - Key: !Join ["", ["kubernetes.io/cluster/", !Ref InfrastructureName]]
  98. Value: "shared"
  99. Outputs:
  100. PrivateIP:
  101. Description: The compute node private IP address.
  102. Value: !GetAtt Worker0.PrivateIp

Initializing the bootstrap sequence on AWS with user-provisioned infrastructure

After you create all of the required infrastructure in Amazon Web Services (AWS), you can start the bootstrap sequence that initializes the OKD control plane.

Prerequisites

  • You configured an AWS account.

  • You added your AWS keys and region to your local AWS profile by running aws configure.

  • You generated the Ignition config files for your cluster.

  • You created and configured a VPC and associated subnets in AWS.

  • You created and configured DNS, load balancers, and listeners in AWS.

  • You created the security groups and roles required for your cluster in AWS.

  • You created the bootstrap machine.

  • You created the control plane machines.

  • You created the worker nodes.

Procedure

  1. Change to the directory that contains the installation program and start the bootstrap process that initializes the OKD control plane:

    1. $ ./openshift-install wait-for bootstrap-complete --dir <installation_directory> \ (1)
    2. --log-level=info (2)
    1For <installation_directory>, specify the path to the directory that you stored the installation files in.
    2To view different installation details, specify warn, debug, or error instead of info.

    Example output

    1. INFO Waiting up to 20m0s for the Kubernetes API at https://api.mycluster.example.com:6443...
    2. INFO API v1.27.3 up
    3. INFO Waiting up to 30m0s for bootstrapping to complete...
    4. INFO It is now safe to remove the bootstrap resources
    5. INFO Time elapsed: 1s

    If the command exits without a FATAL warning, your OKD control plane has initialized.

    After the control plane initializes, it sets up the compute nodes and installs additional services in the form of Operators.

Additional resources

Logging in to the cluster by using the CLI

You can log in to your cluster as a default system user by exporting the cluster kubeconfig file. The kubeconfig file contains information about the cluster that is used by the CLI to connect a client to the correct cluster and API server. The file is specific to a cluster and is created during OKD installation.

Prerequisites

  • You deployed an OKD cluster.

  • You installed the oc CLI.

Procedure

  1. Export the kubeadmin credentials:

    1. $ export KUBECONFIG=<installation_directory>/auth/kubeconfig (1)
    1For <installation_directory>, specify the path to the directory that you stored the installation files in.
  2. Verify you can run oc commands successfully using the exported configuration:

    1. $ oc whoami

    Example output

    1. system:admin

Approving the certificate signing requests for your machines

When you add machines to a cluster, two pending certificate signing requests (CSRs) are generated for each machine that you added. You must confirm that these CSRs are approved or, if necessary, approve them yourself. The client requests must be approved first, followed by the server requests.

Prerequisites

  • You added machines to your cluster.

Procedure

  1. Confirm that the cluster recognizes the machines:

    1. $ oc get nodes

    Example output

    1. NAME STATUS ROLES AGE VERSION
    2. master-0 Ready master 63m v1.27.3
    3. master-1 Ready master 63m v1.27.3
    4. master-2 Ready master 64m v1.27.3

    The output lists all of the machines that you created.

    The preceding output might not include the compute nodes, also known as worker nodes, until some CSRs are approved.

  2. Review the pending CSRs and ensure that you see the client requests with the Pending or Approved status for each machine that you added to the cluster:

    1. $ oc get csr

    Example output

    1. NAME AGE REQUESTOR CONDITION
    2. csr-8b2br 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
    3. csr-8vnps 15m system:serviceaccount:openshift-machine-config-operator:node-bootstrapper Pending
    4. ...

    In this example, two machines are joining the cluster. You might see more approved CSRs in the list.

  3. If the CSRs were not approved, after all of the pending CSRs for the machines you added are in Pending status, approve the CSRs for your cluster machines:

    Because the CSRs rotate automatically, approve your CSRs within an hour of adding the machines to the cluster. If you do not approve them within an hour, the certificates will rotate, and more than two certificates will be present for each node. You must approve all of these certificates. After the client CSR is approved, the Kubelet creates a secondary CSR for the serving certificate, which requires manual approval. Then, subsequent serving certificate renewal requests are automatically approved by the machine-approver if the Kubelet requests a new certificate with identical parameters.

    For clusters running on platforms that are not machine API enabled, such as bare metal and other user-provisioned infrastructure, you must implement a method of automatically approving the kubelet serving certificate requests (CSRs). If a request is not approved, then the oc exec, oc rsh, and oc logs commands cannot succeed, because a serving certificate is required when the API server connects to the kubelet. Any operation that contacts the Kubelet endpoint requires this certificate approval to be in place. The method must watch for new CSRs, confirm that the CSR was submitted by the node-bootstrapper service account in the system:node or system:admin groups, and confirm the identity of the node.

    • To approve them individually, run the following command for each valid CSR:

      1. $ oc adm certificate approve <csr_name> (1)
      1<csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      1. $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs --no-run-if-empty oc adm certificate approve

      Some Operators might not become available until some CSRs are approved.

  4. Now that your client requests are approved, you must review the server requests for each machine that you added to the cluster:

    1. $ oc get csr

    Example output

    1. NAME AGE REQUESTOR CONDITION
    2. csr-bfd72 5m26s system:node:ip-10-0-50-126.us-east-2.compute.internal Pending
    3. csr-c57lv 5m26s system:node:ip-10-0-95-157.us-east-2.compute.internal Pending
    4. ...
  5. If the remaining CSRs are not approved, and are in the Pending status, approve the CSRs for your cluster machines:

    • To approve them individually, run the following command for each valid CSR:

      1. $ oc adm certificate approve <csr_name> (1)
      1<csr_name> is the name of a CSR from the list of current CSRs.
    • To approve all pending CSRs, run the following command:

      1. $ oc get csr -o go-template='{{range .items}}{{if not .status}}{{.metadata.name}}{{"\n"}}{{end}}{{end}}' | xargs oc adm certificate approve
  6. After all client and server CSRs have been approved, the machines have the Ready status. Verify this by running the following command:

    1. $ oc get nodes

    Example output

    1. NAME STATUS ROLES AGE VERSION
    2. master-0 Ready master 73m v1.27.3
    3. master-1 Ready master 73m v1.27.3
    4. master-2 Ready master 74m v1.27.3
    5. worker-0 Ready worker 11m v1.27.3
    6. worker-1 Ready worker 11m v1.27.3

    It can take a few minutes after approval of the server CSRs for the machines to transition to the Ready status.

Additional information

Initial Operator configuration

After the control plane initializes, you must immediately configure some Operators so that they all become available.

Prerequisites

  • Your control plane has initialized.

Procedure

  1. Watch the cluster components come online:

    1. $ watch -n5 oc get clusteroperators

    Example output

    1. NAME VERSION AVAILABLE PROGRESSING DEGRADED SINCE
    2. authentication 4.14.0 True False False 19m
    3. baremetal 4.14.0 True False False 37m
    4. cloud-credential 4.14.0 True False False 40m
    5. cluster-autoscaler 4.14.0 True False False 37m
    6. config-operator 4.14.0 True False False 38m
    7. console 4.14.0 True False False 26m
    8. csi-snapshot-controller 4.14.0 True False False 37m
    9. dns 4.14.0 True False False 37m
    10. etcd 4.14.0 True False False 36m
    11. image-registry 4.14.0 True False False 31m
    12. ingress 4.14.0 True False False 30m
    13. insights 4.14.0 True False False 31m
    14. kube-apiserver 4.14.0 True False False 26m
    15. kube-controller-manager 4.14.0 True False False 36m
    16. kube-scheduler 4.14.0 True False False 36m
    17. kube-storage-version-migrator 4.14.0 True False False 37m
    18. machine-api 4.14.0 True False False 29m
    19. machine-approver 4.14.0 True False False 37m
    20. machine-config 4.14.0 True False False 36m
    21. marketplace 4.14.0 True False False 37m
    22. monitoring 4.14.0 True False False 29m
    23. network 4.14.0 True False False 38m
    24. node-tuning 4.14.0 True False False 37m
    25. openshift-apiserver 4.14.0 True False False 32m
    26. openshift-controller-manager 4.14.0 True False False 30m
    27. openshift-samples 4.14.0 True False False 32m
    28. operator-lifecycle-manager 4.14.0 True False False 37m
    29. operator-lifecycle-manager-catalog 4.14.0 True False False 37m
    30. operator-lifecycle-manager-packageserver 4.14.0 True False False 32m
    31. service-ca 4.14.0 True False False 38m
    32. storage 4.14.0 True False False 37m
  2. Configure the Operators that are not available.

Disabling the default OperatorHub catalog sources

Operator catalogs that source content provided by Red Hat and community projects are configured for OperatorHub by default during an OKD installation. In a restricted network environment, you must disable the default catalogs as a cluster administrator.

Procedure

  • Disable the sources for the default catalogs by adding disableAllDefaultSources: true to the OperatorHub object:

    1. $ oc patch OperatorHub cluster --type json \
    2. -p '[{"op": "add", "path": "/spec/disableAllDefaultSources", "value": true}]'

Alternatively, you can use the web console to manage catalog sources. From the AdministrationCluster SettingsConfigurationOperatorHub page, click the Sources tab, where you can create, update, delete, disable, and enable individual sources.

Image registry storage configuration

Amazon Web Services provides default storage, which means the Image Registry Operator is available after installation. However, if the Registry Operator cannot create an S3 bucket and automatically configure storage, you must manually configure registry storage.

Instructions are shown for configuring a persistent volume, which is required for production clusters. Where applicable, instructions are shown for configuring an empty directory as the storage location, which is available for only non-production clusters.

Additional instructions are provided for allowing the image registry to use block storage types by using the Recreate rollout strategy during upgrades.

Configuring registry storage for AWS with user-provisioned infrastructure

During installation, your cloud credentials are sufficient to create an Amazon S3 bucket and the Registry Operator will automatically configure storage.

If the Registry Operator cannot create an S3 bucket and automatically configure storage, you can create an S3 bucket and configure storage with the following procedure.

Prerequisites

  • You have a cluster on AWS with user-provisioned infrastructure.

  • For Amazon S3 storage, the secret is expected to contain two keys:

    • REGISTRY_STORAGE_S3_ACCESSKEY

    • REGISTRY_STORAGE_S3_SECRETKEY

Procedure

Use the following procedure if the Registry Operator cannot create an S3 bucket and automatically configure storage.

  1. Set up a Bucket Lifecycle Policy to abort incomplete multipart uploads that are one day old.

  2. Fill in the storage configuration in configs.imageregistry.operator.openshift.io/cluster:

    1. $ oc edit configs.imageregistry.operator.openshift.io/cluster

    Example configuration

    1. storage:
    2. s3:
    3. bucket: <bucket-name>
    4. region: <region-name>

To secure your registry images in AWS, block public access to the S3 bucket.

Configuring storage for the image registry in non-production clusters

You must configure storage for the Image Registry Operator. For non-production clusters, you can set the image registry to an empty directory. If you do so, all images are lost if you restart the registry.

Procedure

  • To set the image registry storage to an empty directory:

    1. $ oc patch configs.imageregistry.operator.openshift.io cluster --type merge --patch '{"spec":{"storage":{"emptyDir":{}}}}'

    Configure this option for only non-production clusters.

    If you run this command before the Image Registry Operator initializes its components, the oc patch command fails with the following error:

    1. Error from server (NotFound): configs.imageregistry.operator.openshift.io "cluster" not found

    Wait a few minutes and run the command again.

Deleting the bootstrap resources

After you complete the initial Operator configuration for the cluster, remove the bootstrap resources from Amazon Web Services (AWS).

Prerequisites

  • You completed the initial Operator configuration for your cluster.

Procedure

  1. Delete the bootstrap resources. If you used the CloudFormation template, delete its stack:

    • Delete the stack by using the AWS CLI:

      1. $ aws cloudformation delete-stack --stack-name <name> (1)
      1<name> is the name of your bootstrap stack.
    • Delete the stack by using the AWS CloudFormation console.

Creating the Ingress DNS Records

If you removed the DNS Zone configuration, manually create DNS records that point to the Ingress load balancer. You can create either a wildcard record or specific records. While the following procedure uses A records, you can use other record types that you require, such as CNAME or alias.

Prerequisites

Procedure

  1. Determine the routes to create.

    • To create a wildcard record, use *.apps.<cluster_name>.<domain_name>, where <cluster_name> is your cluster name, and <domain_name> is the Route 53 base domain for your OKD cluster.

    • To create specific records, you must create a record for each route that your cluster uses, as shown in the output of the following command:

      1. $ oc get --all-namespaces -o jsonpath='{range .items[*]}{range .status.ingress[*]}{.host}{"\n"}{end}{end}' routes

      Example output

      1. oauth-openshift.apps.<cluster_name>.<domain_name>
      2. console-openshift-console.apps.<cluster_name>.<domain_name>
      3. downloads-openshift-console.apps.<cluster_name>.<domain_name>
      4. alertmanager-main-openshift-monitoring.apps.<cluster_name>.<domain_name>
      5. prometheus-k8s-openshift-monitoring.apps.<cluster_name>.<domain_name>
  2. Retrieve the Ingress Operator load balancer status and note the value of the external IP address that it uses, which is shown in the EXTERNAL-IP column:

    1. $ oc -n openshift-ingress get service router-default

    Example output

    1. NAME TYPE CLUSTER-IP EXTERNAL-IP PORT(S) AGE
    2. router-default LoadBalancer 172.30.62.215 ab3...28.us-east-2.elb.amazonaws.com 80:31499/TCP,443:30693/TCP 5m
  3. Locate the hosted zone ID for the load balancer:

    1. $ aws elb describe-load-balancers | jq -r '.LoadBalancerDescriptions[] | select(.DNSName == "<external_ip>").CanonicalHostedZoneNameID' (1)
    1For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer that you obtained.

    Example output

    1. Z3AADJGX6KTTL2

    The output of this command is the load balancer hosted zone ID.

  4. Obtain the public hosted zone ID for your cluster’s domain:

    1. $ aws route53 list-hosted-zones-by-name \
    2. --dns-name "<domain_name>" \ (1)
    3. --query 'HostedZones[? Config.PrivateZone != `true` && Name == `<domain_name>.`].Id' (1)
    4. --output text
    1For <domain_name>, specify the Route 53 base domain for your OKD cluster.

    Example output

    1. /hostedzone/Z3URY6TWQ91KVV

    The public hosted zone ID for your domain is shown in the command output. In this example, it is Z3URY6TWQ91KVV.

  5. Add the alias records to your private zone:

    1. $ aws route53 change-resource-record-sets --hosted-zone-id "<private_hosted_zone_id>" --change-batch '{ (1)
    2. > "Changes": [
    3. > {
    4. > "Action": "CREATE",
    5. > "ResourceRecordSet": {
    6. > "Name": "\\052.apps.<cluster_domain>", (2)
    7. > "Type": "A",
    8. > "AliasTarget":{
    9. > "HostedZoneId": "<hosted_zone_id>", (3)
    10. > "DNSName": "<external_ip>.", (4)
    11. > "EvaluateTargetHealth": false
    12. > }
    13. > }
    14. > }
    15. > ]
    16. > }'
    1For <private_hosted_zone_id>, specify the value from the output of the CloudFormation template for DNS and load balancing.
    2For <cluster_domain>, specify the domain or subdomain that you use with your OKD cluster.
    3For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
    4For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.
  6. Add the records to your public zone:

    1. $ aws route53 change-resource-record-sets --hosted-zone-id "<public_hosted_zone_id>"" --change-batch '{ (1)
    2. > "Changes": [
    3. > {
    4. > "Action": "CREATE",
    5. > "ResourceRecordSet": {
    6. > "Name": "\\052.apps.<cluster_domain>", (2)
    7. > "Type": "A",
    8. > "AliasTarget":{
    9. > "HostedZoneId": "<hosted_zone_id>", (3)
    10. > "DNSName": "<external_ip>.", (4)
    11. > "EvaluateTargetHealth": false
    12. > }
    13. > }
    14. > }
    15. > ]
    16. > }'
    1For <public_hosted_zone_id>, specify the public hosted zone for your domain.
    2For <cluster_domain>, specify the domain or subdomain that you use with your OKD cluster.
    3For <hosted_zone_id>, specify the public hosted zone ID for the load balancer that you obtained.
    4For <external_ip>, specify the value of the external IP address of the Ingress Operator load balancer. Ensure that you include the trailing period (.) in this parameter value.

Completing an AWS installation on user-provisioned infrastructure

After you start the OKD installation on Amazon Web Service (AWS) user-provisioned infrastructure, monitor the deployment to completion.

Prerequisites

  • You removed the bootstrap node for an OKD cluster on user-provisioned AWS infrastructure.

  • You installed the oc CLI.

Procedure

  1. From the directory that contains the installation program, complete the cluster installation:

    1. $ ./openshift-install --dir <installation_directory> wait-for install-complete (1)
    1For <installation_directory>, specify the path to the directory that you stored the installation files in.

    Example output

    1. INFO Waiting up to 40m0s for the cluster at https://api.mycluster.example.com:6443 to initialize...
    2. INFO Waiting up to 10m0s for the openshift-console route to be created...
    3. INFO Install complete!
    4. INFO To access the cluster as the system:admin user when using 'oc', run 'export KUBECONFIG=/home/myuser/install_dir/auth/kubeconfig'
    5. INFO Access the OpenShift web-console here: https://console-openshift-console.apps.mycluster.example.com
    6. INFO Login to the console with user: "kubeadmin", and password: "password"
    7. INFO Time elapsed: 1s
    • The Ignition config files that the installation program generates contain certificates that expire after 24 hours, which are then renewed at that time. If the cluster is shut down before renewing the certificates and the cluster is later restarted after the 24 hours have elapsed, the cluster automatically recovers the expired certificates. The exception is that you must manually approve the pending node-bootstrapper certificate signing requests (CSRs) to recover kubelet certificates. See the documentation for Recovering from expired control plane certificates for more information.

    • It is recommended that you use Ignition config files within 12 hours after they are generated because the 24-hour certificate rotates from 16 to 22 hours after the cluster is installed. By using the Ignition config files within 12 hours, you can avoid installation failure if the certificate update runs during installation.

  2. Register your cluster on the Cluster registration page.

Logging in to the cluster by using the web console

The kubeadmin user exists by default after an OKD installation. You can log in to your cluster as the kubeadmin user by using the OKD web console.

Prerequisites

  • You have access to the installation host.

  • You completed a cluster installation and all cluster Operators are available.

Procedure

  1. Obtain the password for the kubeadmin user from the kubeadmin-password file on the installation host:

    1. $ cat <installation_directory>/auth/kubeadmin-password

    Alternatively, you can obtain the kubeadmin password from the <installation_directory>/.openshift_install.log log file on the installation host.

  2. List the OKD web console route:

    1. $ oc get routes -n openshift-console | grep 'console-openshift'

    Alternatively, you can obtain the OKD route from the <installation_directory>/.openshift_install.log log file on the installation host.

    Example output

    1. console console-openshift-console.apps.<cluster_name>.<base_domain> console https reencrypt/Redirect None
  3. Navigate to the route detailed in the output of the preceding command in a web browser and log in as the kubeadmin user.

Additional resources

Additional resources

Additional resources

  • See Working with stacks in the AWS documentation for more information about AWS CloudFormation stacks.

Next steps