- Forwarding logs to external third-party logging systems
- About forwarding logs to third-party systems
- Forwarding JSON logs from containers in the same pod to separate indices
- Supported log data output types in OpenShift Logging 5.1
- Supported log data output types in OpenShift Logging 5.2
- Supported log data output types in OpenShift Logging 5.3
- Supported log data output types in OpenShift Logging 5.4
- Supported log data output types in OpenShift Logging 5.5
- Supported log data output types in OpenShift Logging 5.6
- Forwarding logs to an external Elasticsearch instance
- Forwarding logs using the Fluentd forward protocol
- Forwarding logs using the syslog protocol
- Forwarding logs to Amazon CloudWatch
- Forwarding logs to Loki
- Forwarding logs to Google Cloud Platform (GCP)
- Forwarding logs to Splunk
- Forwarding logs over HTTP
- Forwarding application logs from specific projects
- Forwarding application logs from specific pods
- Troubleshooting log forwarding
Forwarding logs to external third-party logging systems
By default, the logging subsystem sends container and infrastructure logs to the default internal log store defined in the ClusterLogging
custom resource. However, it does not send audit logs to the internal store because it does not provide secure storage. If this default configuration meets your needs, you do not need to configure the Cluster Log Forwarder.
To send logs to other log aggregators, you use the OKD Cluster Log Forwarder. This API enables you to send container, infrastructure, and audit logs to specific endpoints within or outside your cluster. In addition, you can send different types of logs to various systems so that various individuals can access each type. You can also enable Transport Layer Security (TLS) support to send logs securely, as required by your organization.
To send audit logs to the default internal Elasticsearch log store, use the Cluster Log Forwarder as described in Forward audit logs to the log store. |
When you forward logs externally, the logging subsystem creates or modifies a Fluentd config map to send logs using your desired protocols. You are responsible for configuring the protocol on the external log aggregator.
You cannot use the config map methods and the Cluster Log Forwarder in the same cluster. |
About forwarding logs to third-party systems
To send logs to specific endpoints inside and outside your OKD cluster, you specify a combination of outputs and pipelines in a ClusterLogForwarder
custom resource (CR). You can also use inputs to forward the application logs associated with a specific project to an endpoint. Authentication is provided by a Kubernetes Secret object.
output
The destination for log data that you define, or where you want the logs sent. An output can be one of the following types:
elasticsearch
. An external Elasticsearch instance. Theelasticsearch
output can use a TLS connection.fluentdForward
. An external log aggregation solution that supports Fluentd. This option uses the Fluentd forward protocols. ThefluentForward
output can use a TCP or TLS connection and supports shared-key authentication by providing a shared_key field in a secret. Shared-key authentication can be used with or without TLS.syslog
. An external log aggregation solution that supports the syslog RFC3164 or RFC5424 protocols. Thesyslog
output can use a UDP, TCP, or TLS connection.cloudwatch
. Amazon CloudWatch, a monitoring and log storage service hosted by Amazon Web Services (AWS).loki
. Loki, a horizontally scalable, highly available, multi-tenant log aggregation system.kafka
. A Kafka broker. Thekafka
output can use a TCP or TLS connection.default
. The internal OKD Elasticsearch instance. You are not required to configure the default output. If you do configure adefault
output, you receive an error message because thedefault
output is reserved for the Red Hat OpenShift Logging Operator.
pipeline
Defines simple routing from one log type to one or more outputs, or which logs you want to send. The log types are one of the following:
application
. Container logs generated by user applications running in the cluster, except infrastructure container applications.infrastructure
. Container logs from pods that run in theopenshift*
,kube*
, ordefault
projects and journal logs sourced from node file system.audit
. Audit logs generated by the node audit system,auditd
, Kubernetes API server, OpenShift API server, and OVN network.
You can add labels to outbound log messages by using key:value
pairs in the pipeline. For example, you might add a label to messages that are forwarded to other data centers or label the logs by type. Labels that are added to objects are also forwarded with the log message.
input
Forwards the application logs associated with a specific project to a pipeline.
In the pipeline, you define which log types to forward using an inputRef
parameter and where to forward the logs to using an outputRef
parameter.
Secret
A key:value map
that contains confidential data such as user credentials.
Note the following:
If a
ClusterLogForwarder
CR object exists, logs are not forwarded to the default Elasticsearch instance, unless there is a pipeline with thedefault
output.By default, the logging subsystem sends container and infrastructure logs to the default internal Elasticsearch log store defined in the
ClusterLogging
custom resource. However, it does not send audit logs to the internal store because it does not provide secure storage. If this default configuration meets your needs, do not configure the Log Forwarding API.If you do not define a pipeline for a log type, the logs of the undefined types are dropped. For example, if you specify a pipeline for the
application
andaudit
types, but do not specify a pipeline for theinfrastructure
type,infrastructure
logs are dropped.You can use multiple types of outputs in the
ClusterLogForwarder
custom resource (CR) to send logs to servers that support different protocols.The internal OKD Elasticsearch instance does not provide secure storage for audit logs. We recommend you ensure that the system to which you forward audit logs is compliant with your organizational and governmental regulations and is properly secured. The logging subsystem does not comply with those regulations.
The following example forwards the audit logs to a secure external Elasticsearch instance, the infrastructure logs to an insecure external Elasticsearch instance, the application logs to a Kafka broker, and the application logs from the my-apps-logs
project to the internal Elasticsearch instance.
Sample log forwarding outputs and pipelines
apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: elasticsearch-secure (3)
type: "elasticsearch"
url: https://elasticsearch.secure.com:9200
secret:
name: elasticsearch
- name: elasticsearch-insecure (4)
type: "elasticsearch"
url: http://elasticsearch.insecure.com:9200
- name: kafka-app (5)
type: "kafka"
url: tls://kafka.secure.com:9093/app-topic
inputs: (6)
- name: my-app-logs
application:
namespaces:
- my-project
pipelines:
- name: audit-logs (7)
inputRefs:
- audit
outputRefs:
- elasticsearch-secure
- default
parse: json (8)
labels:
secure: "true" (9)
datacenter: "east"
- name: infrastructure-logs (10)
inputRefs:
- infrastructure
outputRefs:
- elasticsearch-insecure
labels:
datacenter: "west"
- name: my-app (11)
inputRefs:
- my-app-logs
outputRefs:
- default
- inputRefs: (12)
- application
outputRefs:
- kafka-app
labels:
datacenter: "south"
1 | The name of the ClusterLogForwarder CR must be instance . |
2 | The namespace for the ClusterLogForwarder CR must be openshift-logging . |
3 | Configuration for an secure Elasticsearch output using a secret with a secure URL.
|
4 | Configuration for an insecure Elasticsearch output:
|
5 | Configuration for a Kafka output using a client-authenticated TLS communication over a secure URL
|
6 | Configuration for an input to filter application logs from the my-project namespace. |
7 | Configuration for a pipeline to send audit logs to the secure external Elasticsearch instance:
|
8 | Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes the structured field and instead sends the log entry to the default index, app-00000x . |
9 | Optional: String. One or more labels to add to the logs. Quote values like “true” so they are recognized as string values, not as a boolean. |
10 | Configuration for a pipeline to send infrastructure logs to the insecure external Elasticsearch instance. |
11 | Configuration for a pipeline to send logs from the my-project project to the internal Elasticsearch instance.
|
12 | Configuration for a pipeline to send logs to the Kafka broker, with no pipeline name:
|
Fluentd log handling when the external log aggregator is unavailable
If your external logging aggregator becomes unavailable and cannot receive logs, Fluentd continues to collect logs and stores them in a buffer. When the log aggregator becomes available, log forwarding resumes, including the buffered logs. If the buffer fills completely, Fluentd stops collecting logs. OKD rotates the logs and deletes them. You cannot adjust the buffer size or add a persistent volume claim (PVC) to the Fluentd daemon set or pods.
Supported Authorization Keys
Common key types are provided here. Some output types support additional specialized keys, documented with the output-specific configuration field. All secret keys are optional. Enable the security features you want by setting the relevant keys. You are responsible for creating and maintaining any additional configurations that external destinations might require, such as keys and secrets, service accounts, port openings, or global proxy configuration. Open Shift Logging will not attempt to verify a mismatch between authorization combinations.
Transport Layer Security (TLS)
Using a TLS URL (‘http://…‘ or ‘ssl://…’) without a Secret enables basic TLS server-side authentication. Additional TLS features are enabled by including a Secret and setting the following optional fields:
tls.crt
: (string) File name containing a client certificate. Enables mutual authentication. Requirestls.key
.tls.key
: (string) File name containing the private key to unlock the client certificate. Requirestls.crt
.passphrase
: (string) Passphrase to decode an encoded TLS private key. Requirestls.key
.ca-bundle.crt
: (string) File name of a customer CA for server authentication.
Username and Password
username
: (string) Authentication user name. Requirespassword
.password
: (string) Authentication password. Requiresusername
.
Simple Authentication Security Layer (SASL)
sasl.enable
(boolean) Explicitly enable or disable SASL. If missing, SASL is automatically enabled when any of the othersasl.
keys are set.sasl.mechanisms
: (array) List of allowed SASL mechanism names. If missing or empty, the system defaults are used.sasl.allow-insecure
: (boolean) Allow mechanisms that send clear-text passwords. Defaults to false.
Creating a Secret
You can create a secret in the directory that contains your certificate and key files by using the following command:
$ oc create secret generic -n openshift-logging <my-secret> \
--from-file=tls.key=<your_key_file>
--from-file=tls.crt=<your_crt_file>
--from-file=ca-bundle.crt=<your_bundle_file>
--from-literal=username=<your_username>
--from-literal=password=<your_password>
Generic or opaque secrets are recommended for best results. |
Forwarding JSON logs from containers in the same pod to separate indices
You can forward structured logs from different containers within the same pod to different indices. To use this feature, you must configure the pipeline with multi-container support and annotate the pods. Logs are written to indices with a prefix of app-
. It is recommended that Elasticsearch be configured with aliases to accommodate this.
JSON formatting of logs varies by application. Because creating too many indices impacts performance, limit your use of this feature to creating indices for logs that have incompatible JSON formats. Use queries to separate logs from different namespaces, or applications with compatible JSON formats. |
Prerequisites
- Logging subsystem for Red Hat OpenShift: 5.5
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
outputDefaults:
elasticsearch:
enableStructuredContainerLogs: true (1)
pipelines:
- inputRefs:
- application
name: application-logs
outputRefs:
- default
parse: json
1 Enables multi-container outputs. Create or edit a YAML file that defines the
Pod
CR object:apiVersion: v1
kind: Pod
metadata:
annotations:
containerType.logging.openshift.io/heavy: heavy (1)
containerType.logging.openshift.io/low: low
spec:
containers:
- name: heavy (2)
image: heavyimage
- name: low
image: lowimage
1 Format: containerType.logging.openshift.io/<container-name>: <index>
2 Annotation names must match container names
This configuration might significantly increase the number of shards on the cluster. |
Additional Resources
Supported log data output types in OpenShift Logging 5.1
Red Hat OpenShift Logging 5.1 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
elasticsearch | elasticsearch | Elasticsearch 6.8.1 Elasticsearch 6.8.4 Elasticsearch 7.12.2 |
fluentdForward | fluentd forward v1 | fluentd 1.7.4 logstash 7.10.1 |
kafka | kafka 0.11 | kafka 2.4.1 kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Previously, the syslog output supported only RFC-3164. The current syslog output adds support for RFC-5424. |
Supported log data output types in OpenShift Logging 5.2
Red Hat OpenShift Logging 5.2 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
Amazon CloudWatch | REST over HTTPS | The current version of Amazon CloudWatch |
elasticsearch | elasticsearch | Elasticsearch 6.8.1 Elasticsearch 6.8.4 Elasticsearch 7.12.2 |
fluentdForward | fluentd forward v1 | fluentd 1.7.4 logstash 7.10.1 |
Loki | REST over HTTP and HTTPS | Loki 2.3.0 deployed on OCP and Grafana labs |
kafka | kafka 0.11 | kafka 2.4.1 kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Supported log data output types in OpenShift Logging 5.3
Red Hat OpenShift Logging 5.3 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
Amazon CloudWatch | REST over HTTPS | The current version of Amazon CloudWatch |
elasticsearch | elasticsearch | Elasticsearch 7.10.1 |
fluentdForward | fluentd forward v1 | fluentd 1.7.4 logstash 7.10.1 |
Loki | REST over HTTP and HTTPS | Loki 2.2.1 deployed on OCP |
kafka | kafka 0.11 | kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Supported log data output types in OpenShift Logging 5.4
Red Hat OpenShift Logging 5.4 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
Amazon CloudWatch | REST over HTTPS | The current version of Amazon CloudWatch |
elasticsearch | elasticsearch | Elasticsearch 7.10.1 |
fluentdForward | fluentd forward v1 | fluentd 1.14.5 logstash 7.10.1 |
Loki | REST over HTTP and HTTPS | Loki 2.2.1 deployed on OCP |
kafka | kafka 0.11 | kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Supported log data output types in OpenShift Logging 5.5
Red Hat OpenShift Logging 5.5 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
Amazon CloudWatch | REST over HTTPS | The current version of Amazon CloudWatch |
elasticsearch | elasticsearch | Elasticsearch 7.10.1 |
fluentdForward | fluentd forward v1 | fluentd 1.14.6 logstash 7.10.1 |
Loki | REST over HTTP and HTTPS | Loki 2.5.0 deployed on OCP |
kafka | kafka 0.11 | kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Supported log data output types in OpenShift Logging 5.6
Red Hat OpenShift Logging 5.6 provides the following output types and protocols for sending log data to target log collectors.
Red Hat tests each of the combinations shown in the following table. However, you should be able to send log data to a wider range target log collectors that ingest these protocols.
Output types | Protocols | Tested with |
---|---|---|
Amazon CloudWatch | REST over HTTPS | The current version of Amazon CloudWatch |
elasticsearch | elasticsearch | Elasticsearch 6.8.23 Elasticsearch 7.10.1 Elasticsearch 8.6.1 |
fluentdForward | fluentd forward v1 | fluentd 1.14.6 logstash 7.10.1 |
Loki | REST over HTTP and HTTPS | Loki 2.5.0 deployed on OCP |
kafka | kafka 0.11 | kafka 2.7.0 |
syslog | RFC-3164, RFC-5424 | rsyslog-8.39.0 |
Fluentd doesn’t support Elasticsearch 8 as of 5.6.2. Vector doesn’t support fluentd/logstash/rsyslog before 5.7.0. |
Forwarding logs to an external Elasticsearch instance
You can optionally forward logs to an external Elasticsearch instance in addition to, or instead of, the internal OKD Elasticsearch instance. You are responsible for configuring the external log aggregator to receive log data from OKD.
To configure log forwarding to an external Elasticsearch instance, you must create a ClusterLogForwarder
custom resource (CR) with an output to that instance, and a pipeline that uses the output. The external Elasticsearch output can use the HTTP (insecure) or HTTPS (secure HTTP) connection.
To forward logs to both an external and the internal Elasticsearch instance, create outputs and pipelines to the external instance and a pipeline that uses the default
output to forward logs to the internal instance. You do not need to create a default
output. If you do configure a default
output, you receive an error message because the default
output is reserved for the Red Hat OpenShift Logging Operator.
If you want to forward logs to only the internal OKD Elasticsearch instance, you do not need to create a |
Prerequisites
- You must have a logging server that is configured to receive the logging data using the specified protocol or format.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: elasticsearch-insecure (3)
type: "elasticsearch" (4)
url: http://elasticsearch.insecure.com:9200 (5)
- name: elasticsearch-secure
type: "elasticsearch"
url: https://elasticsearch.secure.com:9200 (6)
secret:
name: es-secret (7)
pipelines:
- name: application-logs (8)
inputRefs: (9)
- application
- audit
outputRefs:
- elasticsearch-secure (10)
- default (11)
parse: json (12)
labels:
myLabel: "myValue" (13)
- name: infrastructure-audit-logs (14)
inputRefs:
- infrastructure
outputRefs:
- elasticsearch-insecure
labels:
logs: "audit-infra"
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the elasticsearch
type.5 Specify the URL and port of the external Elasticsearch instance as a valid absolute URL. You can use the http
(insecure) orhttps
(secure HTTP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP Address.6 For a secure connection, you can specify an https
orhttp
URL that you authenticate by specifying asecret
.7 For an https
prefix, specify the name of the secret required by the endpoint for TLS communication. The secret must exist in theopenshift-logging
project, and must have keys of: tls.crt, tls.key, and ca-bundle.crt that point to the respective certificates that they represent. Otherwise, forhttp
andhttps
prefixes, you can specify a secret that contains a username and password. For more information, see the following “Example: Setting secret that contains a username and password.”8 Optional: Specify a name for the pipeline. 9 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.10 Specify the name of the output to use when forwarding logs with this pipeline. 11 Optional: Specify the default
output to send the logs to the internal Elasticsearch instance.12 Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured
field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes thestructured
field and instead sends the log entry to the default index,app-00000x
.13 Optional: String. One or more labels to add to the logs. 14 Optional: Configure multiple outputs to forward logs to other external log aggregators of any supported type: A name to describe the pipeline.
The
inputRefs
is the log type to forward by using the pipeline:application,
infrastructure
, oraudit
.The
outputRefs
is the name of the output to use.Optional: String. One or more labels to add to the logs.
Create the CR object:
$ oc create -f <file-name>.yaml
Example: Setting a secret that contains a username and password
You can use a secret that contains a username and password to authenticate a secure connection to an external Elasticsearch instance.
For example, if you cannot use mutual TLS (mTLS) keys because a third party operates the Elasticsearch instance, you can use HTTP or HTTPS and set a secret that contains the username and password.
Create a
Secret
YAML file similar to the following example. Use base64-encoded values for theusername
andpassword
fields. The secret type is opaque by default.apiVersion: v1
kind: Secret
metadata:
name: openshift-test-secret
data:
username: dGVzdHVzZXJuYW1lCg==
password: dGVzdHBhc3N3b3JkCg==
Create the secret:
$ oc create secret -n openshift-logging openshift-test-secret.yaml
Specify the name of the secret in the
ClusterLogForwarder
CR:kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
outputs:
- name: elasticsearch
type: "elasticsearch"
url: https://elasticsearch.secure.com:9200
secret:
name: openshift-test-secret
In the value of the
url
field, the prefix can behttp
orhttps
.Create the CR object:
$ oc create -f <file-name>.yaml
Forwarding logs using the Fluentd forward protocol
You can use the Fluentd forward protocol to send a copy of your logs to an external log aggregator that is configured to accept the protocol instead of, or in addition to, the default Elasticsearch log store. You are responsible for configuring the external log aggregator to receive the logs from OKD.
To configure log forwarding using the forward protocol, you must create a ClusterLogForwarder
custom resource (CR) with one or more outputs to the Fluentd servers, and pipelines that use those outputs. The Fluentd output can use a TCP (insecure) or TLS (secure TCP) connection.
Alternately, you can use a config map to forward logs using the forward protocols. However, this method is deprecated in OKD and will be removed in a future release. |
Prerequisites
- You must have a logging server that is configured to receive the logging data using the specified protocol or format.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: fluentd-server-secure (3)
type: fluentdForward (4)
url: 'tls://fluentdserver.security.example.com:24224' (5)
secret: (6)
name: fluentd-secret
- name: fluentd-server-insecure
type: fluentdForward
url: 'tcp://fluentdserver.home.example.com:24224'
pipelines:
- name: forward-to-fluentd-secure (7)
inputRefs: (8)
- application
- audit
outputRefs:
- fluentd-server-secure (9)
- default (10)
parse: json (11)
labels:
clusterId: "C1234" (12)
- name: forward-to-fluentd-insecure (13)
inputRefs:
- infrastructure
outputRefs:
- fluentd-server-insecure
labels:
clusterId: "C1234"
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the fluentdForward
type.5 Specify the URL and port of the external Fluentd instance as a valid absolute URL. You can use the tcp
(insecure) ortls
(secure TCP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address.6 If using a tls
prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must exist in theopenshift-logging
project, and must have keys of: tls.crt, tls.key, and ca-bundle.crt that point to the respective certificates that they represent. Otherwise, for http and https prefixes, you can specify a secret that contains a username and password. For more information, see the following “Example: Setting secret that contains a username and password.”7 Optional: Specify a name for the pipeline. 8 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.9 Specify the name of the output to use when forwarding logs with this pipeline. 10 Optional: Specify the default
output to forward logs to the internal Elasticsearch instance.11 Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured
field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes thestructured
field and instead sends the log entry to the default index,app-00000x
.12 Optional: String. One or more labels to add to the logs. 13 Optional: Configure multiple outputs to forward logs to other external log aggregators of any supported type: A name to describe the pipeline.
The
inputRefs
is the log type to forward by using the pipeline:application,
infrastructure
, oraudit
.The
outputRefs
is the name of the output to use.Optional: String. One or more labels to add to the logs.
Create the CR object:
$ oc create -f <file-name>.yaml
Enabling nanosecond precision for Logstash to ingest data from fluentd
For Logstash to ingest log data from fluentd, you must enable nanosecond precision in the Logstash configuration file.
Procedure
- In the Logstash configuration file, set
nanosecond_precision
totrue
.
Example Logstash configuration file
input { tcp { codec => fluent { nanosecond_precision => true } port => 24114 } }
filter { }
output { stdout { codec => rubydebug } }
Forwarding logs using the syslog protocol
You can use the syslog RFC3164 or RFC5424 protocol to send a copy of your logs to an external log aggregator that is configured to accept the protocol instead of, or in addition to, the default Elasticsearch log store. You are responsible for configuring the external log aggregator, such as a syslog server, to receive the logs from OKD.
To configure log forwarding using the syslog protocol, you must create a ClusterLogForwarder
custom resource (CR) with one or more outputs to the syslog servers, and pipelines that use those outputs. The syslog output can use a UDP, TCP, or TLS connection.
Alternately, you can use a config map to forward logs using the syslog RFC3164 protocols. However, this method is deprecated in OKD and will be removed in a future release. |
Prerequisites
- You must have a logging server that is configured to receive the logging data using the specified protocol or format.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: rsyslog-east (3)
type: syslog (4)
syslog: (5)
facility: local0
rfc: RFC3164
payloadKey: message
severity: informational
url: 'tls://rsyslogserver.east.example.com:514' (6)
secret: (7)
name: syslog-secret
- name: rsyslog-west
type: syslog
syslog:
appName: myapp
facility: user
msgID: mymsg
procID: myproc
rfc: RFC5424
severity: debug
url: 'udp://rsyslogserver.west.example.com:514'
pipelines:
- name: syslog-east (8)
inputRefs: (9)
- audit
- application
outputRefs: (10)
- rsyslog-east
- default (11)
parse: json (12)
labels:
secure: "true" (13)
syslog: "east"
- name: syslog-west (14)
inputRefs:
- infrastructure
outputRefs:
- rsyslog-west
- default
labels:
syslog: "west"
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the syslog
type.5 Optional: Specify the syslog parameters, listed below. 6 Specify the URL and port of the external syslog instance. You can use the udp
(insecure),tcp
(insecure) ortls
(secure TCP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address.7 If using a tls
prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must exist in theopenshift-logging
project, and must have keys of: tls.crt, tls.key, and ca-bundle.crt that point to the respective certificates that they represent.8 Optional: Specify a name for the pipeline. 9 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.10 Specify the name of the output to use when forwarding logs with this pipeline. 11 Optional: Specify the default
output to forward logs to the internal Elasticsearch instance.12 Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured
field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes thestructured
field and instead sends the log entry to the default index,app-00000x
.13 Optional: String. One or more labels to add to the logs. Quote values like “true” so they are recognized as string values, not as a boolean. 14 Optional: Configure multiple outputs to forward logs to other external log aggregators of any supported type: A name to describe the pipeline.
The
inputRefs
is the log type to forward by using the pipeline:application,
infrastructure
, oraudit
.The
outputRefs
is the name of the output to use.Optional: String. One or more labels to add to the logs.
Create the CR object:
$ oc create -f <file-name>.yaml
Adding log source information to message output
You can add namespace_name
, pod_name
, and container_name
elements to the message
field of the record by adding the AddLogSource
field to your ClusterLogForwarder
custom resource (CR).
spec:
outputs:
- name: syslogout
syslog:
addLogSource: true
facility: user
payloadKey: message
rfc: RFC3164
severity: debug
tag: mytag
type: syslog
url: tls://syslog-receiver.openshift-logging.svc:24224
pipelines:
- inputRefs:
- application
name: test-app
outputRefs:
- syslogout
This configuration is compatible with both RFC3164 and RFC5424. |
Example syslog message output without AddLogSource
<15>1 2020-11-15T17:06:14+00:00 fluentd-9hkb4 mytag - - - {"msgcontent"=>"Message Contents", "timestamp"=>"2020-11-15 17:06:09", "tag_key"=>"rec_tag", "index"=>56}
Example syslog message output with AddLogSource
<15>1 2020-11-16T10:49:37+00:00 crc-j55b9-master-0 mytag - - - namespace_name=clo-test-6327,pod_name=log-generator-ff9746c49-qxm7l,container_name=log-generator,message={"msgcontent":"My life is my message", "timestamp":"2020-11-16 10:49:36", "tag_key":"rec_tag", "index":76}
Syslog parameters
You can configure the following for the syslog
outputs. For more information, see the syslog RFC3164 or RFC5424 RFC.
facility: The syslog facility. The value can be a decimal integer or a case-insensitive keyword:
0
orkern
for kernel messages1
oruser
for user-level messages, the default.2
ormail
for the mail system3
ordaemon
for system daemons4
orauth
for security/authentication messages5
orsyslog
for messages generated internally by syslogd6
orlpr
for the line printer subsystem7
ornews
for the network news subsystem8
oruucp
for the UUCP subsystem9
orcron
for the clock daemon10
orauthpriv
for security authentication messages11
orftp
for the FTP daemon12
orntp
for the NTP subsystem13
orsecurity
for the syslog audit log14
orconsole
for the syslog alert log15
orsolaris-cron
for the scheduling daemon16
–23
orlocal0
–local7
for locally used facilities
Optional:
payloadKey
: The record field to use as payload for the syslog message.Configuring the
payloadKey
parameter prevents other parameters from being forwarded to the syslog.rfc: The RFC to be used for sending logs using syslog. The default is RFC5424.
severity: The syslog severity to set on outgoing syslog records. The value can be a decimal integer or a case-insensitive keyword:
0
orEmergency
for messages indicating the system is unusable1
orAlert
for messages indicating action must be taken immediately2
orCritical
for messages indicating critical conditions3
orError
for messages indicating error conditions4
orWarning
for messages indicating warning conditions5
orNotice
for messages indicating normal but significant conditions6
orInformational
for messages indicating informational messages7
orDebug
for messages indicating debug-level messages, the default
tag: Tag specifies a record field to use as a tag on the syslog message.
trimPrefix: Remove the specified prefix from the tag.
Additional RFC5424 syslog parameters
The following parameters apply to RFC5424:
appName: The APP-NAME is a free-text string that identifies the application that sent the log. Must be specified for
RFC5424
.msgID: The MSGID is a free-text string that identifies the type of message. Must be specified for
RFC5424
.procID: The PROCID is a free-text string. A change in the value indicates a discontinuity in syslog reporting. Must be specified for
RFC5424
.
Forwarding logs to Amazon CloudWatch
You can forward logs to Amazon CloudWatch, a monitoring and log storage service hosted by Amazon Web Services (AWS). You can forward logs to CloudWatch in addition to, or instead of, the default log store.
To configure log forwarding to CloudWatch, you must create a ClusterLogForwarder
custom resource (CR) with an output for CloudWatch, and a pipeline that uses the output.
Procedure
Create a
Secret
YAML file that uses theaws_access_key_id
andaws_secret_access_key
fields to specify your base64-encoded AWS credentials. For example:apiVersion: v1
kind: Secret
metadata:
name: cw-secret
namespace: openshift-logging
data:
aws_access_key_id: QUtJQUlPU0ZPRE5ON0VYQU1QTEUK
aws_secret_access_key: d0phbHJYVXRuRkVNSS9LN01ERU5HL2JQeFJmaUNZRVhBTVBMRUtFWQo=
Create the secret. For example:
$ oc apply -f cw-secret.yaml
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object. In the file, specify the name of the secret. For example:apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: cw (3)
type: cloudwatch (4)
cloudwatch:
groupBy: logType (5)
groupPrefix: <group prefix> (6)
region: us-east-2 (7)
secret:
name: cw-secret (8)
pipelines:
- name: infra-logs (9)
inputRefs: (10)
- infrastructure
- audit
- application
outputRefs:
- cw (11)
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the cloudwatch
type.5 Optional: Specify how to group the logs: logType
creates log groups for each log typenamespaceName
creates a log group for each application name space. It also creates separate log groups for infrastructure and audit logs.namespaceUUID
creates a new log groups for each application namespace UUID. It also creates separate log groups for infrastructure and audit logs.
6 Optional: Specify a string to replace the default infrastructureName
prefix in the names of the log groups.7 Specify the AWS region. 8 Specify the name of the secret that contains your AWS credentials. 9 Optional: Specify a name for the pipeline. 10 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.11 Specify the name of the output to use when forwarding logs with this pipeline. Create the CR object:
$ oc create -f <file-name>.yaml
Example: Using ClusterLogForwarder with Amazon CloudWatch
Here, you see an example ClusterLogForwarder
custom resource (CR) and the log data that it outputs to Amazon CloudWatch.
Suppose that you are running an OKD cluster named mycluster
. The following command returns the cluster’s infrastructureName
, which you will use to compose aws
commands later on:
$ oc get Infrastructure/cluster -ojson | jq .status.infrastructureName
"mycluster-7977k"
To generate log data for this example, you run a busybox
pod in a namespace called app
. The busybox
pod writes a message to stdout every three seconds:
$ oc run busybox --image=busybox -- sh -c 'while true; do echo "My life is my message"; sleep 3; done'
$ oc logs -f busybox
My life is my message
My life is my message
My life is my message
...
You can look up the UUID of the app
namespace where the busybox
pod runs:
$ oc get ns/app -ojson | jq .metadata.uid
"794e1e1a-b9f5-4958-a190-e76a9b53d7bf"
In your ClusterLogForwarder
custom resource (CR), you configure the infrastructure
, audit
, and application
log types as inputs to the all-logs
pipeline. You also connect this pipeline to cw
output, which forwards the logs to a CloudWatch instance in the us-east-2
region:
apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance
namespace: openshift-logging
spec:
outputs:
- name: cw
type: cloudwatch
cloudwatch:
groupBy: logType
region: us-east-2
secret:
name: cw-secret
pipelines:
- name: all-logs
inputRefs:
- infrastructure
- audit
- application
outputRefs:
- cw
Each region in CloudWatch contains three levels of objects:
log group
log stream
- log event
With groupBy: logType
in the ClusterLogForwarding
CR, the three log types in the inputRefs
produce three log groups in Amazon Cloudwatch:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"mycluster-7977k.application"
"mycluster-7977k.audit"
"mycluster-7977k.infrastructure"
Each of the log groups contains log streams:
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.application | jq .logStreams[].logStreamName
"kubernetes.var.log.containers.busybox_app_busybox-da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76.log"
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.audit | jq .logStreams[].logStreamName
"ip-10-0-131-228.us-east-2.compute.internal.k8s-audit.log"
"ip-10-0-131-228.us-east-2.compute.internal.linux-audit.log"
"ip-10-0-131-228.us-east-2.compute.internal.openshift-audit.log"
...
$ aws --output json logs describe-log-streams --log-group-name mycluster-7977k.infrastructure | jq .logStreams[].logStreamName
"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-69f9fd9b58-zqzw5_openshift-oauth-apiserver_oauth-apiserver-453c5c4ee026fe20a6139ba6b1cdd1bed25989c905bf5ac5ca211b7cbb5c3d7b.log"
"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5-lftrx_openshift-apiserver_openshift-apiserver-ce51532df7d4e4d5f21c4f4be05f6575b93196336be0027067fd7d93d70f66a4.log"
"ip-10-0-131-228.us-east-2.compute.internal.kubernetes.var.log.containers.apiserver-797774f7c5-lftrx_openshift-apiserver_openshift-apiserver-check-endpoints-82a9096b5931b5c3b1d6dc4b66113252da4a6472c9fff48623baee761911a9ef.log"
...
Each log stream contains log events. To see a log event from the busybox
Pod, you specify its log stream from the application
log group:
$ aws logs get-log-events --log-group-name mycluster-7977k.application --log-stream-name kubernetes.var.log.containers.busybox_app_busybox-da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76.log
{
"events": [
{
"timestamp": 1629422704178,
"message": "{\"docker\":{\"container_id\":\"da085893053e20beddd6747acdbaf98e77c37718f85a7f6a4facf09ca195ad76\"},\"kubernetes\":{\"container_name\":\"busybox\",\"namespace_name\":\"app\",\"pod_name\":\"busybox\",\"container_image\":\"docker.io/library/busybox:latest\",\"container_image_id\":\"docker.io/library/busybox@sha256:0f354ec1728d9ff32edcd7d1b8bbdfc798277ad36120dc3dc683be44524c8b60\",\"pod_id\":\"870be234-90a3-4258-b73f-4f4d6e2777c7\",\"host\":\"ip-10-0-216-3.us-east-2.compute.internal\",\"labels\":{\"run\":\"busybox\"},\"master_url\":\"https://kubernetes.default.svc\",\"namespace_id\":\"794e1e1a-b9f5-4958-a190-e76a9b53d7bf\",\"namespace_labels\":{\"kubernetes_io/metadata_name\":\"app\"}},\"message\":\"My life is my message\",\"level\":\"unknown\",\"hostname\":\"ip-10-0-216-3.us-east-2.compute.internal\",\"pipeline_metadata\":{\"collector\":{\"ipaddr4\":\"10.0.216.3\",\"inputname\":\"fluent-plugin-systemd\",\"name\":\"fluentd\",\"received_at\":\"2021-08-20T01:25:08.085760+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-20T01:25:04.178986+00:00\",\"viaq_index_name\":\"app-write\",\"viaq_msg_id\":\"NWRjZmUyMWQtZjgzNC00MjI4LTk3MjMtNTk3NmY3ZjU4NDk1\",\"log_type\":\"application\",\"time\":\"2021-08-20T01:25:04+00:00\"}",
"ingestionTime": 1629422744016
},
...
Example: Customizing the prefix in log group names
In the log group names, you can replace the default infrastructureName
prefix, mycluster-7977k
, with an arbitrary string like demo-group-prefix
. To make this change, you update the groupPrefix
field in the ClusterLogForwarding
CR:
cloudwatch:
groupBy: logType
groupPrefix: demo-group-prefix
region: us-east-2
The value of groupPrefix
replaces the default infrastructureName
prefix:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"demo-group-prefix.application"
"demo-group-prefix.audit"
"demo-group-prefix.infrastructure"
Example: Naming log groups after application namespace names
For each application namespace in your cluster, you can create a log group in CloudWatch whose name is based on the name of the application namespace.
If you delete an application namespace object and create a new one that has the same name, CloudWatch continues using the same log group as before.
If you consider successive application namespace objects that have the same name as equivalent to each other, use the approach described in this example. Otherwise, if you need to distinguish the resulting log groups from each other, see the following “Naming log groups for application namespace UUIDs” section instead.
To create application log groups whose names are based on the names of the application namespaces, you set the value of the groupBy
field to namespaceName
in the ClusterLogForwarder
CR:
cloudwatch:
groupBy: namespaceName
region: us-east-2
Setting groupBy
to namespaceName
affects the application log group only. It does not affect the audit
and infrastructure
log groups.
In Amazon Cloudwatch, the namespace name appears at the end of each log group name. Because there is a single application namespace, “app”, the following output shows a new mycluster-7977k.app
log group instead of mycluster-7977k.application
:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"mycluster-7977k.app"
"mycluster-7977k.audit"
"mycluster-7977k.infrastructure"
If the cluster in this example had contained multiple application namespaces, the output would show multiple log groups, one for each namespace.
The groupBy
field affects the application log group only. It does not affect the audit
and infrastructure
log groups.
Example: Naming log groups after application namespace UUIDs
For each application namespace in your cluster, you can create a log group in CloudWatch whose name is based on the UUID of the application namespace.
If you delete an application namespace object and create a new one, CloudWatch creates a new log group.
If you consider successive application namespace objects with the same name as different from each other, use the approach described in this example. Otherwise, see the preceding “Example: Naming log groups for application namespace names” section instead.
To name log groups after application namespace UUIDs, you set the value of the groupBy
field to namespaceUUID
in the ClusterLogForwarder
CR:
cloudwatch:
groupBy: namespaceUUID
region: us-east-2
In Amazon Cloudwatch, the namespace UUID appears at the end of each log group name. Because there is a single application namespace, “app”, the following output shows a new mycluster-7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf
log group instead of mycluster-7977k.application
:
$ aws --output json logs describe-log-groups | jq .logGroups[].logGroupName
"mycluster-7977k.794e1e1a-b9f5-4958-a190-e76a9b53d7bf" // uid of the "app" namespace
"mycluster-7977k.audit"
"mycluster-7977k.infrastructure"
The groupBy
field affects the application log group only. It does not affect the audit
and infrastructure
log groups.
Forwarding logs to Amazon CloudWatch from STS enabled clusters
For clusters with AWS Security Token Service (STS) enabled, you can create an AWS service account manually or create a credentials request by using the Cloud Credential Operator(CCO) utility ccoctl
.
This feature is not supported by the vector collector. |
Prerequisites
- Logging subsystem for Red Hat OpenShift: 5.5 and later
Procedure
Create a
CredentialsRequest
custom resource YAML by using the template below:CloudWatch credentials request template
apiVersion: cloudcredential.openshift.io/v1
kind: CredentialsRequest
metadata:
name: <your_role_name>-credrequest
namespace: openshift-cloud-credential-operator
spec:
providerSpec:
apiVersion: cloudcredential.openshift.io/v1
kind: AWSProviderSpec
statementEntries:
- action:
- logs:PutLogEvents
- logs:CreateLogGroup
- logs:PutRetentionPolicy
- logs:CreateLogStream
- logs:DescribeLogGroups
- logs:DescribeLogStreams
effect: Allow
resource: arn:aws:logs:*:*:*
secretRef:
name: <your_role_name>
namespace: openshift-logging
serviceAccountNames:
- logcollector
Use the
ccoctl
command to create a role for AWS using yourCredentialsRequest
CR. With theCredentialsRequest
object, thisccoctl
command creates an IAM role with a trust policy that is tied to the specified OIDC identity provider, and a permissions policy that grants permissions to perform operations on CloudWatch resources. This command also creates a YAML configuration file in/<path_to_ccoctl_output_dir>/manifests/openshift-logging-<your_role_name>-credentials.yaml
. This secret file contains therole_arn
key/value used during authentication with the AWS IAM identity provider.$ ccoctl aws create-iam-roles \
--name=<name> \
--region=<aws_region> \
--credentials-requests-dir=<path_to_directory_with_list_of_credentials_requests>/credrequests \
--identity-provider-arn=arn:aws:iam::<aws_account_id>:oidc-provider/<name>-oidc.s3.<aws_region>.amazonaws.com (1)
1 <name> is the name used to tag your cloud resources and should match the name used during your STS cluster install Apply the secret created:
$ oc apply -f output/manifests/openshift-logging-<your_role_name>-credentials.yaml
Create or edit a
ClusterLogForwarder
custom resource:apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: cw (3)
type: cloudwatch (4)
cloudwatch:
groupBy: logType (5)
groupPrefix: <group prefix> (6)
region: us-east-2 (7)
secret:
name: <your_role_name> (8)
pipelines:
- name: to-cloudwatch (9)
inputRefs: (10)
- infrastructure
- audit
- application
outputRefs:
- cw (11)
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the cloudwatch
type.5 Optional: Specify how to group the logs: logType
creates log groups for each log typenamespaceName
creates a log group for each application name space. Infrastructure and audit logs are unaffected, remaining grouped bylogType
.namespaceUUID
creates a new log groups for each application namespace UUID. It also creates separate log groups for infrastructure and audit logs.
6 Optional: Specify a string to replace the default infrastructureName
prefix in the names of the log groups.7 Specify the AWS region. 8 Specify the name of the secret that contains your AWS credentials. 9 Optional: Specify a name for the pipeline. 10 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.11 Specify the name of the output to use when forwarding logs with this pipeline.
Additional resources
Creating a secret for AWS CloudWatch with an existing AWS role
If you have an existing role for AWS, you can create a secret for AWS with STS using the oc create secret --from-literal
command.
Procedure
In the CLI, enter the following to generate a secret for AWS:
$ oc create secret generic cw-sts-secret -n openshift-logging --from-literal=role_arn=arn:aws:iam::123456789012:role/my-role_with-permissions
Example Secret
apiVersion: v1
kind: Secret
metadata:
namespace: openshift-logging
name: my-secret-name
stringData:
role_arn: arn:aws:iam::123456789012:role/my-role_with-permissions
Forwarding logs to Loki
You can forward logs to an external Loki logging system in addition to, or instead of, the internal default OKD Elasticsearch instance.
To configure log forwarding to Loki, you must create a ClusterLogForwarder
custom resource (CR) with an output to Loki, and a pipeline that uses the output. The output to Loki can use the HTTP (insecure) or HTTPS (secure HTTP) connection.
Prerequisites
- You must have a Loki logging system running at the URL you specify with the
url
field in the CR.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: "logging.openshift.io/v1"
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: loki-insecure (3)
type: "loki" (4)
url: http://loki.insecure.com:3100 (5)
loki:
tenantKey: kubernetes.namespace_name
labelKeys: kubernetes.labels.foo
- name: loki-secure (6)
type: "loki"
url: https://loki.secure.com:3100
secret:
name: loki-secret (7)
loki:
tenantKey: kubernetes.namespace_name (8)
labelKeys: kubernetes.labels.foo (9)
pipelines:
- name: application-logs (10)
inputRefs: (11)
- application
- audit
outputRefs: (12)
- loki-secure
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the type as “loki”
.5 Specify the URL and port of the Loki system as a valid absolute URL. You can use the http
(insecure) orhttps
(secure HTTP) protocol. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP Address. Loki’s default port for HTTP(S) communication is 3100.6 For a secure connection, you can specify an https
orhttp
URL that you authenticate by specifying asecret
.7 For an https
prefix, specify the name of the secret required by the endpoint for TLS communication. The secret must exist in theopenshift-logging
project, and must have keys of: tls.crt, tls.key, and ca-bundle.crt that point to the respective certificates that they represent. Otherwise, forhttp
andhttps
prefixes, you can specify a secret that contains a username and password. For more information, see the following “Example: Setting secret that contains a username and password.”8 Optional: Specify a meta-data key field to generate values for the TenantID
field in Loki. For example, settingtenantKey: kubernetes.namespacename
uses the names of the Kubernetes namespaces as values for tenant IDs in Loki. To see which other log record fields you can specify, see the “Log Record Fields” link in the following “Additional resources” section.9 Optional: Specify a list of meta-data field keys to replace the default Loki labels. Loki label names must match the regular expression [a-zA-Z:][a-zA-Z0-9:]*
. Illegal characters in meta-data keys are replaced withto form the label name. For example, the
kubernetes.labels.foo
meta-data key becomes Loki labelkubernetes_labels_foo
. If you do not setlabelKeys
, the default value is:[log_type, kubernetes.namespace_name, kubernetes.pod_name, kubernetes_host]
. Keep the set of labels small because Loki limits the size and number of labels allowed. See Configuring Loki, limits_config. You can still query based on any log record field using query filters.10 Optional: Specify a name for the pipeline. 11 Specify which log types to forward by using the pipeline: application,
infrastructure
, oraudit
.12 Specify the name of the output to use when forwarding logs with this pipeline. Because Loki requires log streams to be correctly ordered by timestamp,
labelKeys
always includes thekubernetes_host
label set, even if you do not specify it. This inclusion ensures that each stream originates from a single host, which prevents timestamps from becoming disordered due to clock differences on different hosts.Create the CR object:
$ oc create -f <file-name>.yaml
Troubleshooting Loki “entry out of order” errors
If your Fluentd forwards a large block of messages to a Loki logging system that exceeds the rate limit, Loki to generates “entry out of order” errors. To fix this issue, you update some values in the Loki server configuration file, loki.yaml
.
|
Conditions
The
ClusterLogForwarder
custom resource is configured to forward logs to Loki.Your system sends a block of messages that is larger than 2 MB to Loki, such as:
"values":[["1630410392689800468","{\"kind\":\"Event\",\"apiVersion\":\
.......
......
......
......
\"received_at\":\"2021-08-31T11:46:32.800278+00:00\",\"version\":\"1.7.4 1.6.0\"}},\"@timestamp\":\"2021-08-31T11:46:32.799692+00:00\",\"viaq_index_name\":\"audit-write\",\"viaq_msg_id\":\"MzFjYjJkZjItNjY0MC00YWU4LWIwMTEtNGNmM2E5ZmViMGU4\",\"log_type\":\"audit\"}"]]}]}
When you enter
oc logs -c fluentd
, the Fluentd logs in your OpenShift Logging cluster show the following messages:429 Too Many Requests Ingestion rate limit exceeded (limit: 8388608 bytes/sec) while attempting to ingest '2140' lines totaling '3285284' bytes
429 Too Many Requests Ingestion rate limit exceeded' or '500 Internal Server Error rpc error: code = ResourceExhausted desc = grpc: received message larger than max (5277702 vs. 4194304)'
When you open the logs on the Loki server, they display
entry out of order
messages like these:,\nentry with timestamp 2021-08-18 05:58:55.061936 +0000 UTC ignored, reason: 'entry out of order' for stream:
{fluentd_thread=\"flush_thread_0\", log_type=\"audit\"},\nentry with timestamp 2021-08-18 06:01:18.290229 +0000 UTC ignored, reason: 'entry out of order' for stream: {fluentd_thread="flush_thread_0", log_type="audit"}
Procedure
Update the following fields in the
loki.yaml
configuration file on the Loki server with the values shown here:grpc_server_max_recv_msg_size: 8388608
chunk_target_size: 8388608
ingestion_rate_mb: 8
ingestion_burst_size_mb: 16
Apply the changes in
loki.yaml
to the Loki server.
Example loki.yaml
file
auth_enabled: false
server:
http_listen_port: 3100
grpc_listen_port: 9096
grpc_server_max_recv_msg_size: 8388608
ingester:
wal:
enabled: true
dir: /tmp/wal
lifecycler:
address: 127.0.0.1
ring:
kvstore:
store: inmemory
replication_factor: 1
final_sleep: 0s
chunk_idle_period: 1h # Any chunk not receiving new logs in this time will be flushed
chunk_target_size: 8388608
max_chunk_age: 1h # All chunks will be flushed when they hit this age, default is 1h
chunk_retain_period: 30s # Must be greater than index read cache TTL if using an index cache (Default index read cache TTL is 5m)
max_transfer_retries: 0 # Chunk transfers disabled
schema_config:
configs:
- from: 2020-10-24
store: boltdb-shipper
object_store: filesystem
schema: v11
index:
prefix: index_
period: 24h
storage_config:
boltdb_shipper:
active_index_directory: /tmp/loki/boltdb-shipper-active
cache_location: /tmp/loki/boltdb-shipper-cache
cache_ttl: 24h # Can be increased for faster performance over longer query periods, uses more disk space
shared_store: filesystem
filesystem:
directory: /tmp/loki/chunks
compactor:
working_directory: /tmp/loki/boltdb-shipper-compactor
shared_store: filesystem
limits_config:
reject_old_samples: true
reject_old_samples_max_age: 12h
ingestion_rate_mb: 8
ingestion_burst_size_mb: 16
chunk_store_config:
max_look_back_period: 0s
table_manager:
retention_deletes_enabled: false
retention_period: 0s
ruler:
storage:
type: local
local:
directory: /tmp/loki/rules
rule_path: /tmp/loki/rules-temp
alertmanager_url: http://localhost:9093
ring:
kvstore:
store: inmemory
enable_api: true
Additional resources
Additional resources
Forwarding logs to Google Cloud Platform (GCP)
You can forward logs to Google Cloud Logging in addition to, or instead of, the internal default OKD log store.
Using this feature with Fluentd is not supported. |
Prerequisites
- Logging subsystem for Red Hat OpenShift Operator 5.5.1 and later
Procedure
Create a secret using your Google service account key.
$ oc -n openshift-logging create secret generic gcp-secret --from-file google-application-credentials.json=<your_service_account_key_file.json>
Create a
ClusterLogForwarder
Custom Resource YAML using the template below:apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogForwarder"
metadata:
name: "instance"
namespace: "openshift-logging"
spec:
outputs:
- name: gcp-1
type: googleCloudLogging
secret:
name: gcp-secret
googleCloudLogging:
projectId : "openshift-gce-devel" (1)
logId : "app-gcp" (2)
pipelines:
- name: test-app
inputRefs: (3)
- application
outputRefs:
- gcp-1
1 Set either a projectId
,folderId
,organizationId
, orbillingAccountId
field and its corresponding value, depending on where you want to store your logs in the GCP resource hierarchy.2 Set the value to add to the logName
field of the Log Entry.3 Specify which log types to forward by using the pipeline: application
,infrastructure
, oraudit
.
Additional resources
Forwarding logs to Splunk
You can forward logs to the Splunk HTTP Event Collector (HEC) in addition to, or instead of, the internal default OKD log store.
Using this feature with Fluentd is not supported. |
Prerequisites
Red Hat OpenShift Logging Operator 5.6 and higher
ClusterLogging instance with vector specified as collector
Base64 encoded Splunk HEC token
Procedure
Create a secret using your Base64 encoded Splunk HEC token.
$ oc -n openshift-logging create secret generic vector-splunk-secret --from-literal hecToken=<HEC_Token>
Create or edit the
ClusterLogForwarder
Custom Resource (CR) using the template below:apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogForwarder"
metadata:
name: "instance" (1)
namespace: "openshift-logging" (2)
spec:
outputs:
- name: splunk-receiver (3)
secret:
name: vector-splunk-secret (4)
type: splunk (5)
url: <http://your.splunk.hec.url:8088> (6)
pipelines: (7)
- inputRefs:
- application
- infrastructure
name: (8)
outputRefs:
- splunk-receiver (9)
1 The name of the ClusterLogForwarder CR must be instance
.2 The namespace for the ClusterLogForwarder CR must be openshift-logging
.3 Specify a name for the output. 4 Specify the name of the secret that contains your HEC token. 5 Specify the output type as splunk
.6 Specify the URL (including port) of your Splunk HEC. 7 Specify which log types to forward by using the pipeline: application
,infrastructure
, oraudit
.8 Optional: Specify a name for the pipeline. 9 Specify the name of the output to use when forwarding logs with this pipeline.
Forwarding logs over HTTP
Forwarding logs over HTTP is supported for both fluentd and vector collectors. To enable, specify http
as the output type in the ClusterLogForwarder
custom resource (CR).
Procedure
- Create or edit the ClusterLogForwarder Custom Resource (CR) using the template below:
Example ClusterLogForwarder CR
apiVersion: "logging.openshift.io/v1"
kind: "ClusterLogForwarder"
metadata:
name: "instance"
namespace: "openshift-logging"
spec:
outputs:
- name: httpout-app
type: http
url: (1)
http:
headers: (2)
h1: v1
h2: v2
method: POST
secret:
name: (3)
tls:
insecureSkipVerify: (4)
pipelines:
- name:
inputRefs:
- application
outputRefs:
- (5)
1 | Destination address for logs. |
2 | Additional headers to send with the log record. |
3 | Secret name for destination credentials. |
4 | Values are either true or false . |
5 | This value should be the same as the output name. |
Forwarding application logs from specific projects
You can use the Cluster Log Forwarder to send a copy of the application logs from specific projects to an external log aggregator. You can do this in addition to, or instead of, using the default Elasticsearch log store. You must also configure the external log aggregator to receive log data from OKD.
To configure forwarding application logs from a project, you must create a ClusterLogForwarder
custom resource (CR) with at least one input from a project, optional outputs for other log aggregators, and pipelines that use those inputs and outputs.
Prerequisites
- You must have a logging server that is configured to receive the logging data using the specified protocol or format.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object:apiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
outputs:
- name: fluentd-server-secure (3)
type: fluentdForward (4)
url: 'tls://fluentdserver.security.example.com:24224' (5)
secret: (6)
name: fluentd-secret
- name: fluentd-server-insecure
type: fluentdForward
url: 'tcp://fluentdserver.home.example.com:24224'
inputs: (7)
- name: my-app-logs
application:
namespaces:
- my-project
pipelines:
- name: forward-to-fluentd-insecure (8)
inputRefs: (9)
- my-app-logs
outputRefs: (10)
- fluentd-server-insecure
parse: json (11)
labels:
project: "my-project" (12)
- name: forward-to-fluentd-secure (13)
inputRefs:
- application
- audit
- infrastructure
outputRefs:
- fluentd-server-secure
- default
labels:
clusterId: "C1234"
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify a name for the output. 4 Specify the output type: elasticsearch
,fluentdForward
,syslog
, orkafka
.5 Specify the URL and port of the external log aggregator as a valid absolute URL. If the cluster-wide proxy using the CIDR annotation is enabled, the output must be a server name or FQDN, not an IP address. 6 If using a tls
prefix, you must specify the name of the secret required by the endpoint for TLS communication. The secret must exist in theopenshift-logging
project and have tls.crt, tls.key, and ca-bundle.crt keys that each point to the certificates they represent.7 Configuration for an input to filter application logs from the specified projects. 8 Configuration for a pipeline to use the input to send project application logs to an external Fluentd instance. 9 The my-app-logs
input.10 The name of the output to use. 11 Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured
field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes thestructured
field and instead sends the log entry to the default index,app-00000x
.12 Optional: String. One or more labels to add to the logs. 13 Configuration for a pipeline to send logs to other log aggregators. Optional: Specify a name for the pipeline.
Specify which log types to forward by using the pipeline:
application,
infrastructure
, oraudit
.Specify the name of the output to use when forwarding logs with this pipeline.
Optional: Specify the
default
output to forward logs to the internal Elasticsearch instance.Optional: String. One or more labels to add to the logs.
Create the CR object:
$ oc create -f <file-name>.yaml
Forwarding application logs from specific pods
As a cluster administrator, you can use Kubernetes pod labels to gather log data from specific pods and forward it to a log collector.
Suppose that you have an application composed of pods running alongside other pods in various namespaces. If those pods have labels that identify the application, you can gather and output their log data to a specific log collector.
To specify the pod labels, you use one or more matchLabels
key-value pairs. If you specify multiple key-value pairs, the pods must match all of them to be selected.
Procedure
Create or edit a YAML file that defines the
ClusterLogForwarder
CR object. In the file, specify the pod labels using simple equality-based selectors underinputs[].name.application.selector.matchLabels
, as shown in the following example.Example
ClusterLogForwarder
CR YAML fileapiVersion: logging.openshift.io/v1
kind: ClusterLogForwarder
metadata:
name: instance (1)
namespace: openshift-logging (2)
spec:
pipelines:
- inputRefs: [ myAppLogData ] (3)
outputRefs: [ default ] (4)
parse: json (5)
inputs: (6)
- name: myAppLogData
application:
selector:
matchLabels: (7)
environment: production
app: nginx
namespaces: (8)
- app1
- app2
outputs: (9)
- default
...
1 The name of the ClusterLogForwarder
CR must beinstance
.2 The namespace for the ClusterLogForwarder
CR must beopenshift-logging
.3 Specify one or more comma-separated values from inputs[].name
.4 Specify one or more comma-separated values from outputs[]
.5 Optional: Specify whether to forward structured JSON log entries as JSON objects in the structured
field. The log entry must contain valid structured JSON; otherwise, OpenShift Logging removes thestructured
field and instead sends the log entry to the default index,app-00000x
.6 Define a unique inputs[].name
for each application that has a unique set of pod labels.7 Specify the key-value pairs of pod labels whose log data you want to gather. You must specify both a key and value, not just a key. To be selected, the pods must match all the key-value pairs. 8 Optional: Specify one or more namespaces. 9 Specify one or more outputs to forward your log data to. The optional default
output shown here sends log data to the internal Elasticsearch instance.Optional: To restrict the gathering of log data to specific namespaces, use
inputs[].name.application.namespaces
, as shown in the preceding example.Optional: You can send log data from additional applications that have different pod labels to the same pipeline.
For each unique combination of pod labels, create an additional
inputs[].name
section similar to the one shown.Update the
selectors
to match the pod labels of this application.Add the new
inputs[].name
value toinputRefs
. For example:- inputRefs: [ myAppLogData, myOtherAppLogData ]
Create the CR object:
$ oc create -f <file-name>.yaml
Additional resources
- For more information on
matchLabels
in Kubernetes, see Resources that support set-based requirements.
Additional resources
Troubleshooting log forwarding
When you create a ClusterLogForwarder
custom resource (CR), if the Red Hat OpenShift Logging Operator does not redeploy the Fluentd pods automatically, you can delete the Fluentd pods to force them to redeploy.
Prerequisites
- You have created a
ClusterLogForwarder
custom resource (CR) object.
Procedure
Delete the Fluentd pods to force them to redeploy.
$ oc delete pod --selector logging-infra=collector