Recommended etcd practices
This topic provides recommended performance and scalability practices for etcd in OKD.
Recommended etcd practices
Because etcd writes data to disk and persists proposals on disk, its performance depends on disk performance. Although etcd is not particularly I/O intensive, it requires a low latency block device for optimal performance and stability. Because etcd’s consensus protocol depends on persistently storing metadata to a log (WAL), etcd is sensitive to disk-write latency. Slow disks and disk activity from other processes can cause long fsync latencies.
Those latencies can cause etcd to miss heartbeats, not commit new proposals to the disk on time, and ultimately experience request timeouts and temporary leader loss. High write latencies also lead to an OpenShift API slowness, which affects cluster performance. Because of these reasons, avoid colocating other workloads on the control-plane nodes.
In terms of latency, run etcd on top of a block device that can write at least 50 IOPS of 8000 bytes long sequentially. That is, with a latency of 10ms, keep in mind that uses fdatasync to synchronize each write in the WAL. For heavy loaded clusters, sequential 500 IOPS of 8000 bytes (2 ms) are recommended. To measure those numbers, you can use a benchmarking tool, such as fio.
To achieve such performance, run etcd on machines that are backed by SSD or NVMe disks with low latency and high throughput. Consider single-level cell (SLC) solid-state drives (SSDs), which provide 1 bit per memory cell, are durable and reliable, and are ideal for write-intensive workloads.
The following hard disk features provide optimal etcd performance:
Low latency to support fast read operation.
High-bandwidth writes for faster compactions and defragmentation.
High-bandwidth reads for faster recovery from failures.
Solid state drives as a minimum selection, however NVMe drives are preferred.
Server-grade hardware from various manufacturers for increased reliability.
RAID 0 technology for increased performance.
Dedicated etcd drives. Do not place log files or other heavy workloads on etcd drives.
Avoid NAS or SAN setups and spinning drives. Always benchmark by using utilities such as fio. Continuously monitor the cluster performance as it increases.
Avoid using the Network File System (NFS) protocol or other network based file systems. |
Some key metrics to monitor on a deployed OKD cluster are p99 of etcd disk write ahead log duration and the number of etcd leader changes. Use Prometheus to track these metrics.
The etcd member database sizes can vary in a cluster during normal operations. This difference does not affect cluster upgrades, even if the leader size is different from the other members. |
To validate the hardware for etcd before or after you create the OKD cluster, you can use fio.
Prerequisites
Container runtimes such as Podman or Docker are installed on the machine that you’re testing.
Data is written to the
/var/lib/etcd
path.
Procedure
Run fio and analyze the results:
If you use Podman, run this command:
$ sudo podman run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf
If you use Docker, run this command:
$ sudo docker run --volume /var/lib/etcd:/var/lib/etcd:Z quay.io/openshift-scale/etcd-perf
The output reports whether the disk is fast enough to host etcd by comparing the 99th percentile of the fsync metric captured from the run to see if it is less than 10 ms. A few of the most important etcd metrics that might affected by I/O performance are as follow:
etcd_disk_wal_fsync_duration_seconds_bucket
metric reports the etcd’s WAL fsync durationetcd_disk_backend_commit_duration_seconds_bucket
metric reports the etcd backend commit latency durationetcd_server_leader_changes_seen_total
metric reports the leader changes
Because etcd replicates the requests among all the members, its performance strongly depends on network input/output (I/O) latency. High network latencies result in etcd heartbeats taking longer than the election timeout, which results in leader elections that are disruptive to the cluster. A key metric to monitor on a deployed OKD cluster is the 99th percentile of etcd network peer latency on each etcd cluster member. Use Prometheus to track the metric.
The histogram_quantile(0.99, rate(etcd_network_peer_round_trip_time_seconds_bucket[2m]))
metric reports the round trip time for etcd to finish replicating the client requests between the members. Ensure that it is less than 50 ms.
Additional resources
Moving etcd to a different disk
You can move etcd from a shared disk to a separate disk to prevent or resolve performance issues.
Prerequisites
The
MachineConfigPool
must matchmetadata.labels[machineconfiguration.openshift.io/role]
. This applies to a controller, worker, or a custom pool.The node’s auxiliary storage device, such as
/dev/sdb
, must match the sdb. Change this reference in all places in the file.
This procedure does not move parts of the root file system, such as |
The Machine Config Operator (MCO) is responsible for mounting a secondary disk for an OKD 4.13 container storage.
Use the following steps to move etcd to a different device:
Procedure
Create a
machineconfig
YAML file namedetcd-mc.yml
and add the following information:apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 98-var-lib-etcd
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Make File System on /dev/sdb
DefaultDependencies=no
BindsTo=dev-sdb.device
After=dev-sdb.device var.mount
Before=systemd-fsck@dev-sdb.service
[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/usr/lib/systemd/systemd-makefs xfs /dev/sdb
TimeoutSec=0
[Install]
WantedBy=var-lib-containers.mount
enabled: true
name: systemd-mkfs@dev-sdb.service
- contents: |
[Unit]
Description=Mount /dev/sdb to /var/lib/etcd
Before=local-fs.target
Requires=systemd-mkfs@dev-sdb.service
After=systemd-mkfs@dev-sdb.service var.mount
[Mount]
What=/dev/sdb
Where=/var/lib/etcd
Type=xfs
Options=defaults,prjquota
[Install]
WantedBy=local-fs.target
enabled: true
name: var-lib-etcd.mount
- contents: |
[Unit]
Description=Sync etcd data if new mount is empty
DefaultDependencies=no
After=var-lib-etcd.mount var.mount
Before=crio.service
[Service]
Type=oneshot
RemainAfterExit=yes
ExecCondition=/usr/bin/test ! -d /var/lib/etcd/member
ExecStart=/usr/sbin/setenforce 0
ExecStart=/bin/rsync -ar /sysroot/ostree/deploy/rhcos/var/lib/etcd/ /var/lib/etcd/
ExecStart=/usr/sbin/setenforce 1
TimeoutSec=0
[Install]
WantedBy=multi-user.target graphical.target
enabled: true
name: sync-var-lib-etcd-to-etcd.service
- contents: |
[Unit]
Description=Restore recursive SELinux security contexts
DefaultDependencies=no
After=var-lib-etcd.mount
Before=crio.service
[Service]
Type=oneshot
RemainAfterExit=yes
ExecStart=/sbin/restorecon -R /var/lib/etcd/
TimeoutSec=0
[Install]
WantedBy=multi-user.target graphical.target
enabled: true
name: restorecon-var-lib-etcd.service
Create the machine configuration by entering the following commands:
$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
... output omitted ...
$ oc create -f etcd-mc.yml
machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd created
$ oc login -u ${ADMIN} -p ${ADMINPASSWORD} ${API}
[... output omitted ...]
$ oc create -f etcd-mc.yml machineconfig.machineconfiguration.openshift.io/98-var-lib-etcd created
The nodes are updated and rebooted. After the reboot completes, the following events occur:
An XFS file system is created on the specified disk.
The disk mounts to
/var/lib/etc
.The content from
/sysroot/ostree/deploy/rhcos/var/lib/etcd
syncs to/var/lib/etcd
.A restore of
SELinux
labels is forced for/var/lib/etcd
.The old content is not removed.
After the nodes are on a separate disk, update the machine configuration file,
etcd-mc.yml
with the following information:apiVersion: machineconfiguration.openshift.io/v1
kind: MachineConfig
metadata:
labels:
machineconfiguration.openshift.io/role: master
name: 98-var-lib-etcd
spec:
config:
ignition:
version: 3.2.0
systemd:
units:
- contents: |
[Unit]
Description=Mount /dev/sdb to /var/lib/etcd
Before=local-fs.target
Requires=systemd-mkfs@dev-sdb.service
After=systemd-mkfs@dev-sdb.service var.mount
[Mount]
What=/dev/sdb
Where=/var/lib/etcd
Type=xfs
Options=defaults,prjquota
[Install]
WantedBy=local-fs.target
enabled: true
name: var-lib-etcd.mount
Apply the modified version that removes the logic for creating and syncing the device by entering the following command:
$ oc replace -f etcd-mc.yml
The previous step prevents the nodes from rebooting.
Additional resources
Defragmenting etcd data
For large and dense clusters, etcd can suffer from poor performance if the keyspace grows too large and exceeds the space quota. Periodically maintain and defragment etcd to free up space in the data store. Monitor Prometheus for etcd metrics and defragment it when required; otherwise, etcd can raise a cluster-wide alarm that puts the cluster into a maintenance mode that accepts only key reads and deletes.
Monitor these key metrics:
etcd_server_quota_backend_bytes
, which is the current quota limitetcd_mvcc_db_total_size_in_use_in_bytes
, which indicates the actual database usage after a history compactionetcd_mvcc_db_total_size_in_bytes
, which shows the database size, including free space waiting for defragmentation
Defragment etcd data to reclaim disk space after events that cause disk fragmentation, such as etcd history compaction.
History compaction is performed automatically every five minutes and leaves gaps in the back-end database. This fragmented space is available for use by etcd, but is not available to the host file system. You must defragment etcd to make this space available to the host file system.
Defragmentation occurs automatically, but you can also trigger it manually.
Automatic defragmentation is good for most cases, because the etcd operator uses cluster information to determine the most efficient operation for the user. |
Automatic defragmentation
The etcd Operator automatically defragments disks. No manual intervention is needed.
Verify that the defragmentation process is successful by viewing one of these logs:
etcd logs
cluster-etcd-operator pod
operator status error log
Automatic defragmentation can cause leader election failure in various OpenShift core components, such as the Kubernetes controller manager, which triggers a restart of the failing component. The restart is harmless and either triggers failover to the next running instance or the component resumes work again after the restart. |
Example log output for successful defragmentation
etcd member has been defragmented: <member_name>, memberID: <member_id>
Example log output for unsuccessful defragmentation
failed defrag on member: <member_name>, memberID: <member_id>: <error_message>
Manual defragmentation
A Prometheus alert indicates when you need to use manual defragmentation. The alert is displayed in two cases:
When etcd uses more than 50% of its available space for more than 10 minutes
When etcd is actively using less than 50% of its total database size for more than 10 minutes
You can also determine whether defragmentation is needed by checking the etcd database size in MB that will be freed by defragmentation with the PromQL expression: (etcd_mvcc_db_total_size_in_bytes - etcd_mvcc_db_total_size_in_use_in_bytes)/1024/1024
Defragmenting etcd is a blocking action. The etcd member will not respond until defragmentation is complete. For this reason, wait at least one minute between defragmentation actions on each of the pods to allow the cluster to recover. |
Follow this procedure to defragment etcd data on each etcd member.
Prerequisites
- You have access to the cluster as a user with the
cluster-admin
role.
Procedure
Determine which etcd member is the leader, because the leader should be defragmented last.
Get the list of etcd pods:
$ oc -n openshift-etcd get pods -l k8s-app=etcd -o wide
Example output
etcd-ip-10-0-159-225.example.redhat.com 3/3 Running 0 175m 10.0.159.225 ip-10-0-159-225.example.redhat.com <none> <none>
etcd-ip-10-0-191-37.example.redhat.com 3/3 Running 0 173m 10.0.191.37 ip-10-0-191-37.example.redhat.com <none> <none>
etcd-ip-10-0-199-170.example.redhat.com 3/3 Running 0 176m 10.0.199.170 ip-10-0-199-170.example.redhat.com <none> <none>
Choose a pod and run the following command to determine which etcd member is the leader:
$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com etcdctl endpoint status --cluster -w table
Example output
Defaulting container name to etcdctl.
Use 'oc describe pod/etcd-ip-10-0-159-225.example.redhat.com -n openshift-etcd' to see all of the containers in this pod.
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false | 7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 104 MB | false | false | 7 | 91624 | 91624 | |
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false | 7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
Based on the
IS LEADER
column of this output, thehttps://10.0.199.170:2379
endpoint is the leader. Matching this endpoint with the output of the previous step, the pod name of the leader isetcd-ip-10-0-199-170.example.redhat.com
.
Defragment an etcd member.
Connect to the running etcd container, passing in the name of a pod that is not the leader:
$ oc rsh -n openshift-etcd etcd-ip-10-0-159-225.example.redhat.com
Unset the
ETCDCTL_ENDPOINTS
environment variable:sh-4.4# unset ETCDCTL_ENDPOINTS
Defragment the etcd member:
sh-4.4# etcdctl --command-timeout=30s --endpoints=https://localhost:2379 defrag
Example output
Finished defragmenting etcd member[https://localhost:2379]
If a timeout error occurs, increase the value for
--command-timeout
until the command succeeds.Verify that the database size was reduced:
sh-4.4# etcdctl endpoint status -w table --cluster
Example output
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| ENDPOINT | ID | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| https://10.0.191.37:2379 | 251cd44483d811c3 | 3.4.9 | 104 MB | false | false | 7 | 91624 | 91624 | |
| https://10.0.159.225:2379 | 264c7c58ecbdabee | 3.4.9 | 41 MB | false | false | 7 | 91624 | 91624 | | (1)
| https://10.0.199.170:2379 | 9ac311f93915cc79 | 3.4.9 | 104 MB | true | false | 7 | 91624 | 91624 | |
+---------------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
This example shows that the database size for this etcd member is now 41 MB as opposed to the starting size of 104 MB.
Repeat these steps to connect to each of the other etcd members and defragment them. Always defragment the leader last.
Wait at least one minute between defragmentation actions to allow the etcd pod to recover. Until the etcd pod recovers, the etcd member will not respond.
If any
NOSPACE
alarms were triggered due to the space quota being exceeded, clear them.Check if there are any
NOSPACE
alarms:sh-4.4# etcdctl alarm list
Example output
memberID:12345678912345678912 alarm:NOSPACE
Clear the alarms:
sh-4.4# etcdctl alarm disarm
Next steps
After defragmentation, if etcd still uses more than 50% of its available space, consider increasing the disk quota for etcd.